
Data Acquisition Toolbox™

Reference

R2017a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Data Acquisition Toolbox™ Reference
© COPYRIGHT 2005–2017 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

September 2010 Online only Revised for Version 2.17 (Release 2010b)
April 2011 Online only Revised for Version 2.18 (Release 2011a)
September 2011 Online only Revised for Version 3.0 (Release 2011b)
March 2012 Online only Revised for Version 3.1 (Release 2012a)
September 2012 Online only Revised for Version 3.2 (Release 2012b)
March 2013 Online only Revised for Version 3.3 (Release 2013a)
September 2013 Online only Revised for Version 3.4 (Release 2013b)
March 2014 Online only Revised for Version 3.5 (Release 2014a)
October 2014 Online only Revised for Version 3.6 (Release 2014b)
March 2015 Online only Revised for Version 3.7 (Release 2015a)
September 2015 Online only Revised for Version 3.8 (Release 2015b)
March 2016 Online only Revised for Version 3.9 (Release 2016a)
September 2016 Online only Revised for Version 3.10 (Release 2016b)
March 2017 Online only Revised for Version 3.11 (Release 2017a)

Contents

Base Properties — Alphabetical List
1

Device-Specific Properties — Alphabetical List
2

Block Reference
3

Functions — Alphabetical List
4

v

1

Base Properties — Alphabetical List

1 Base Properties — Alphabetical List

ActiveEdge
Rising or falling edges of EdgeCount signals

Description

When working with the session-based interface, use the ActiveEdge property to
represent rising or falling edges of a EdgeCount signal.

Values

You can set the Active edge of a counter input channel to Rising or Falling.

Examples

s = daq.createSession('ni');

ch = addCounterInputChannel(s,'cDAQ1Mod5', 0, 'EdgeCount')

ch =

Data acquisition counter input edge count channel 'ctr0' on device 'Dev2':

 ActiveEdge: Rising

 CountDirection: Increment

 InitialCount: 0

 Terminal: 'PFI8'

 Name: empty

 ID: 'ctr0'

 Device: [1x1 daq.ni.DeviceInfo]

 MeasurementType: 'EdgeCount'

Change the Active Edge property to 'Falling':
ch.ActiveEdge = 'Falling'

ch =

Data acquisition counter input edge count channel 'ctr0' on device 'Dev2':

 ActiveEdge: Falling

1-2

 ActiveEdge

 CountDirection: Increment

 InitialCount: 0

 Terminal: 'PFI8'

 Name: empty

 ID: 'ctr0'

 Device: [1x1 daq.ni.DeviceInfo]

 MeasurementType: 'EdgeCount'

See Also

Functions

addCounterInputChannel, addCounterOutputChannel

1-3

1 Base Properties — Alphabetical List

ActivePulse
Active pulse measurement of PulseWidth counter channel

Description

When working with the session-based interface , the ActivePulse property displays
the pulse width measurement in seconds of your counter channel, with PulseWidth
measurement type.

Values

Active pulse measurement values include:

• 'High'

• 'Low'

Examples

Create a session object, add a counter input channel, with the 'EdgeCount'
MeasurementType.
s = daq.createSession('ni');

ch = addCounterInputChannel(s,'cDAQ1Mod5', 0, 'PulseWidth')

ch =

Data acquisition counter input pulse width channel 'ctr0' on device 'cDAQ1Mod5':

 ActivePulse: High

 Terminal: 'PFI4'

 Name: empty

 ID: 'ctr1'

 Device: [1x1 daq.ni.DeviceInfo]

 MeasurementType: 'PulseWidth

Change the ActiveEdge property to Low.

ch.ActivePulse = 'Low'

ch =

1-4

 ActivePulse

Data acquisition counter input pulse width channel 'ctr0' on device 'cDAQ1Mod5':

 ActivePulse: Low

 Terminal: 'PFI4'

 Name: empty

 ID: 'ctr1'

 Device: [1x1 daq.ni.DeviceInfo]

 MeasurementType: 'PulseWidth'

See Also

addCounterInputChannel

1-5

1 Base Properties — Alphabetical List

ADCTimingMode
Set channel timing mode

Description

When working with the session-based interface, use the ADCTimingMode property to
specify if the timing mode in of all channels in the device is high resolution or high speed.

Note: The ADCTimingMode must be the same for all channels on the device.

Values

You can set the ADCTimingMode to:

• 'HighResolution'

• 'HighSpeed'

• 'Best50HzRejection'

• 'Best60HzRejection'

Examples

Create a session and add an analog input channel:

s = daq.createSession('ni');

ch = addAnalogInputChannel(s,'cDAQ1Mod1','ai1','Voltage');

ch

ans =

Data acquisition analog input voltage channel 'ai1' on device 'cDAQ1Mod1':

 Coupling: DC

 TerminalConfig: SingleEnded

1-6

 ADCTimingMode

 Range: -10 to +10 Volts

 Name: ''

 ID: 'ai1'

 Device: [1x1 daq.ni.CompactDAQModule]

MeasurementType: 'Voltage'

 ADCTimingMode: ''

Set the ADCTimingMode property to 'HighResolution':
ch.ADCTimingMode = 'HighResolution';

See Also

addAnalogInputChannel

1-7

1 Base Properties — Alphabetical List

AutoSyncDSA
Automatically Synchronize DSA devices

Description

Use this property to enable or disable automatic synchronization between DSA (PXI
or PCI) devices in the same session. By default the sessions automatic synchronization
capability is disabled.

Examples

To enable automatic synchronization, create a session and add channels from a DSA
device:

s = daq.createSession('ni')

addAnalogInputChannel(s,'PXI1Slot2',0,'Voltage');

addAnalogInputChannel(s,'PXI1Slot3',1,'Voltage');

Enable automatic synchronization and acquire data”

s.AutoSyncDSA = true;

startForeground(s);

See Also

addAnalogInputChannel

1-8

 BitsPerSample

BitsPerSample
Display bits per sample

Description

This property displays the maximum value of bits per sample of the device, based on the
device specifications. By default this read-only value is 24.

Example

View BitsPerSample Property

Create an audio input session and display session properties.

s = daq.createSession('directsound')

s =

Data acquisition session using DirectSound hardware:

 Will run for 1 second (44100 scans) at 44100 scans/second.

 No channels have been added.

Properties, Methods, Events

Click on the Properties link.

 UseStandardSampleRates: true

 BitsPerSample: 24

 StandardSampleRates: [1x15 double]

 NumberOfScans: 44100

 DurationInSeconds: 1

 Rate: 44100

 IsContinuous: false

 NotifyWhenDataAvailableExceeds: 4410

IsNotifyWhenDataAvailableExceedsAuto: true

 NotifyWhenScansQueuedBelow: 22050

 IsNotifyWhenScansQueuedBelowAuto: true

 ExternalTriggerTimeout: 10

1-9

1 Base Properties — Alphabetical List

 TriggersPerRun: 1

 Vendor: DirectSound

 Channels: ''

 Connections: ''

 IsRunning: false

 IsLogging: false

 IsDone: false

 IsWaitingForExternalTrigger: false

 TriggersRemaining: 1

 RateLimit: ''

 ScansQueued: 0

 ScansOutputByHardware: 0

 ScansAcquired: 0

See Also
StandardSampleRates | UseStandardSampleRate | addAudioInputChannel |
addAudioOutputChannel

1-10

 BridgeMode

BridgeMode
Specify analog input device bridge mode

Description

Use this property in the session-based interface to specify the bridge mode, which
represents the active gauge of the analog input channel.

The bridge mode is 'Unknown' when you add a bridge channel to the session. Change
this value to a valid mode to use the channel. Valid bridge modes are:

• 'Full' — All four gauges are active.
• 'Half'— Only two bridges are active.
• 'Quarter'— Only one bridge is active.

Examples

Set BridgeMode Property

Set the BridgeMode property of a analog input Bridge measurement type channel.

Create a session and add an analog input Bridge channel.

s = daq.createSession('ni');

ch = addAnalogInputChannel(s,'cDAQ1Mod7', 0, 'Bridge');

Set the BridgeMode property to ‘Full’ and view the channel properties.

ch.BridgeMode = 'Full'

ch =

Data acquisition analog input channel 'ai0' on device 'cDAQ1Mod7':

 BridgeMode: Full

 ExcitationSource: Internal

 ExcitationVoltage: 2.5

NominalBridgeResistance: 'Unknown'

1-11

1 Base Properties — Alphabetical List

 Range: -0.063 to +0.063 VoltsPerVolt

 Name: ''

 ID: 'ai0'

 Device: [1x1 daq.ni.CompactDAQModule]

 MeasurementType: 'Bridge'

 ADCTimingMode: HighResolution

See Also

addAnalogInputChannel

1-12

 Channels

Channels

Array of channel objects associated with session object

Description

This session object property contains and displays an array of channels added to the
session. For more information on the session-based interface, see “Hardware Discovery
and Session Setup”.

Tip: You cannot directly add or remove channels using the Channels object properties.
Use addAnalogInputChannel and addAnalogOutputChannel to add channels. Use
removeChannel to remove channels.

Values

The value is determined by the channels you add to the session object.

Example

Access Channels Property

Create both analog and digital channels in a session and display the Channels property.

Create a session object, add an analog input channel, and display the session Channels
property.

s = daq.createSession('ni');

aich = addAnalogInputChannel(s,'cDAQ1Mod7',0,'Bridge');

aich =

Data acquisition analog input channel 'ai0' on device 'cDAQ1Mod7':

1-13

1 Base Properties — Alphabetical List

 BridgeMode: Unknown

 ExcitationSource: Internal

 ExcitationVoltage: 2.5

NominalBridgeResistance: 'Unknown'

 Range: -0.025 to +0.025 VoltsPerVolt

 Name: ''

 ID: 'ai0'

 Device: [1x1 daq.ni.CompactDAQModule]

 MeasurementType: 'Bridge'

 ADCTimingMode: HighResolution

Add an analog output channel and view the Channels property.

aoch = addAnalogOutputChannel(s,'cDAQ1Mod2', 'ao1', 'Voltage')

aoch =

Data acquisition analog output voltage channel 'ao1' on device 'cDAQ1Mod2':

 TerminalConfig: SingleEnded

 Range: -10 to +10 Volts

 Name: ''

 ID: 'ao1'

 Device: [1x1 daq.ni.CompactDAQModule]

MeasurementType: 'Voltage'

Add a digital channel with 'InputOnly'.

dich = addDigitalChannel(s,'dev1','Port0/Line0:1','InputOnly')

dich =

Number of channels: 2

 index Type Device Channel MeasurementType Range Name

 ----- ---- ------ ----------- --------------- ----- ----

 1 dio Dev1 port0/line0 InputOnly n/a

 2 dio Dev1 port0/line1 InputOnly n/a

Change the TerminalConfig property of the input channel to 'SingleEnded'.

aich.TerminalConfig = 'SingleEnded';

1-14

 Channels

You can use the channel object to access and edit the Channels property.

See Also

Functions

addAnalogInputChannel, addAnalogOutputChannel

1-15

1 Base Properties — Alphabetical List

Connections
Array of connections in session

Description

This session property contains and displays all connections added to the session.

Tip: You cannot directly add or remove connections using the Connections object
properties. Use addTriggerConnection and addClockConnection to add
connections. Use removeConnection to remove connections.

Values

The value is determined by the connections you add to the session.

Examples

Remove Synchronization Connection

This example shows you how to remove a synchronization connection.

Create a session and add analog input channels and trigger and clock connections.

s = daq.createSession('ni')

addAnalogInputChannel(s,'Dev1', 0, 'voltage');

addAnalogInputChannel(s,'Dev2', 0, 'voltage');

addAnalogInputChannel(s,'Dev3', 0, 'voltage');

addTriggerConnection(s,'Dev1/PFI4','Dev2/PFI0','StartTrigger');

addTriggerConnection(s,'Dev1/PFI4','Dev3/PFI0','StartTrigger');

addClockConnection(s,'Dev1/PFI5','Dev2/PFI1','ScanClock');

Examine the session Connections property.

s.Connections

ans =

1-16

 Connections

Start Trigger is provided by 'Dev1' at 'PFI4' and will be received by:

 'Dev2' at terminal 'PFI0'

 'Dev3' at terminal 'PFI0'

Scan Clock is provided by 'Dev1' at 'PFI5' and will be received by:

 'Dev2' at terminal 'PFI1'

 'Dev3' at terminal 'PFI1'

 index Type Source Destination

 ----- ------------ --------- -----------

 1 StartTrigger Dev1/PFI4 Dev2/PFI0

 2 StartTrigger Dev1/PFI4 Dev3/PFI0

 3 ScanClock Dev1/PFI5 Dev2/PFI1

 4 ScanClock Dev1/PFI5 Dev3/PFI1

Remove the last clock connection at index 4 and display the session connections.

removeConnection(s,4)

s.Connections

ans =

Start Trigger is provided by 'Dev1' at 'PFI4' and will be received by:

 'Dev2' at terminal 'PFI0'

 'Dev3' at terminal 'PFI0'

Scan Clock is provided by 'Dev1' at 'PFI5' and will be received by 'Dev2' at terminal 'PFI1'.

 index Type Source Destination

 ----- ------------ --------- -----------

 1 StartTrigger Dev1/PFI4 Dev2/PFI0

 2 StartTrigger Dev1/PFI4 Dev3/PFI0

 3 ScanClock Dev1/PFI5 Dev2/PFI1

See Also

Function

addTriggerConnection, addClockConnection,

1-17

1 Base Properties — Alphabetical List

CountDirection
Specify direction of counter channel

Description

When working with the session-based interface, use the CountDirection property to
set the direction of the counter. Count direction can be 'Increment', in which case the
counter operates in incremental order, or 'Decrement', in which the counter operates in
decrements.

Examples

Create a session object, add a counter input channel, and change the CountDirection.
s = daq.createSession('ni');

ch = addCounterInputChannel (s,'cDAQ1Mod5', 0, 'EdgeCount')

ch =

Data acquisition counter input edge count channel 'ctr0' on device 'cDAQ1Mod5':

 ActiveEdge: Rising

 CountDirection: Increment

 InitialCount: 0

 Terminal: 'PFI8'

 Name: empty

 ID: 'ctr0'

 Device: [1x1 daq.ni.DeviceInfo]

 MeasurementType: 'EdgeCount'

Change CountDirection to 'Decrement':

ch.CountDirection = 'Decrement'

ch =

Data acquisition counter input edge count channel 'ctr0' on device 'cDAQ1Mod5':

 ActiveEdge: Rising

 CountDirection: Decrement

 InitialCount: 0

 Terminal: 'PFI8'

 Name: empty

1-18

 CountDirection

 ID: 'ctr0'

 Device: [1x1 daq.ni.DeviceInfo]

 MeasurementType: 'EdgeCount'

See Also

addCounterInputChannel

1-19

1 Base Properties — Alphabetical List

Destination
Indicates trigger destination terminal

Description

When working with the session-based interface, the Destination property indicates the
device and terminal to which you connect a trigger.

Example

Examine a Trigger Connection Destination

Create a session with a trigger connection and examine the connection properties.

Create a session and add 2 analog input channels form different devices.

s = daq.createSession('ni');

addAnalogInputChannel(s,'Dev1', 0, 'voltage');

addAnalogInputChannel(s,'Dev2', 0, 'voltage');

Add a trigger connection and examine the connection properties.

addTriggerConnection(s,'Dev1/PFI4','Dev2/PFI0','StartTrigger')

ans =

Start Trigger is provided by 'Dev1' at 'PFI4' and will be received by 'Dev2' at terminal 'PFI0'.

 TriggerType: 'Digital'

TriggerCondition: RisingEdge

 Source: 'Dev1/PFI4'

 Destination: 'Dev2/PFI0'

 Type: StartTrigger

See Also

Source, addTriggerConnection

1-20

 Device

Device
Channel device information

Description

When working with the session-based interface, the read-only Device property displays
device information for the channel.

Examples

Create a session object, add a counter input channel, and view the Device property.
s = daq.createSession('ni');

ch = addCounterInputChannel(s,'cDAQ1Mod5', 0, 'EdgeCount');

ch.Device

ans =

ni cDAQ1Mod5: National Instruments NI 9402

 Counter input subsystem supports:

 Rates from 0.1 to 80000000.0 scans/sec

 2 channels

 'EdgeCount','PulseWidth','Frequency','Position' measurement types

 Counter output subsystem supports:

 Rates from 0.1 to 80000000.0 scans/sec

 3 channels

 'PulseGeneration' measurement type

This module is in chassis 'cDAQ1', slot 5

See Also

addCounterInputChannel, addCounterOutputChannel

1-21

1 Base Properties — Alphabetical List

Direction
Specify digital channel direction

Description

When you add a digital channel or a group to a session, you can specify the measurement
type to be:

• Input

• Output

• Unknown

When you specify the MeasurementType as Bidirectional, you can use the channel
to input and output messages. By default the channel is set to Unknown. Change the
direction to output signal on the channel.

Example

To change the direction of a bidirectional signal on a digital channel in the session s,
type:

s.Channels(1).Direction='Output';

Change the Direction of a Digital Channel

Change the direction of a bidirectional digital channel to Input.

Create a session and add a bidirectional digital channel.

s = daq.createSession('ni')

ch = addDigitalChannel(s,'dev6', 'Port0/Line0', 'Bidirectional')

ch =

Data acquisition digital bidirectional (unknown) channel 'port0/line0' on device 'Dev6':

 Direction: Unknown

1-22

 Direction

 Name: ''

 ID: 'port0/line0'

 Device: [1x1 daq.ni.DeviceInfo]

MeasurementType: 'Bidirectional (Unknown)'

Change the channels direction to 'Input'.

ch.Direction = 'Input'

ch =

Data acquisition digital bidirectional (input) channel 'port0/line0' on device 'Dev6':

 Direction: Input

 Name: ''

 ID: 'port0/line0'

 Device: [1x1 daq.ni.DeviceInfo]

MeasurementType: 'Bidirectional (Input)'

Properties, Methods, Events

1-23

1 Base Properties — Alphabetical List

DurationInSeconds
Specify duration of acquisition

Description

When working with the session-based interface, use the DurationInSeconds property
to change the duration of an acquisition.

When the session contains analog, digital, or audio output channels,
DurationInSeconds is a read-only property whose value is determined by
s ScansQueued

s Rate

.

.

.

If the session contains only counter output channels with PulseGeneration measurement
type, then DurationInSeconds represents the duration of the pulse train signal
generation.

Values

In a session with only input channels or counter output channels, you can enter a value
in seconds for the length of the acquisition. Changing the duration changes the number
of scans accordingly. By default, DurationInSeconds is set to 1 second.

Examples

Create a session object, add an analog input channel, and change the duration:
s = daq.createSession('ni');

addAnalogInputChannel(s,'cDAQ1Mod1','ai0','voltage');

s.DurationInSeconds = 2

s =

Data acquisition session using National Instruments hardware:

 Will run for 2 seconds (2000 scans) at 1000 scans/second.

 Operation starts immediately.

 Number of channels: 1

 index Type Device Channel MeasurementType Range Name

 ----- ---- --------- ------- ----------------- ---------------- ----

1-24

 DurationInSeconds

 1 ai cDAQ1Mod1 ai0 Voltage (Diff) -10 to +10 Volts

See Also

Properties

NumberOfScans, Rate

Functions

addCounterInputChannel

1-25

1 Base Properties — Alphabetical List

DutyCycle
Duty cycle of output channel

Description

When working with the session-based interface, use the DutyCycle property to specify
the fraction of time that the generated pulse is in active state.

Duty cycle is the ratio between the duration of the pulse and the pulse period. For
example, if a pulse duration is 1 microsecond and the pulse period is 4 microseconds, the
duty cycle is 0.25. In a square wave, you will see that the time the signal is high is equal
to the time the signal is low.

For function generation channels using Digilent devices, each waveform adopts the duty
cycle

Examples

Specify Duty Cycle

Create a session object and add a 'PulseGeneration' counter output channel:

s = daq.createSession('ni');

ch = addCounterOutputChannel(s,'cDAQ1Mod5', 'ctr0', 'PulseGeneration')

ch =

Data acquisition counter output pulse generation channel 'ctr0' on device 'cDAQ1Mod5':

 IdleState: Low

 InitialDelay: 2.5e-08

 Frequency: 100

 DutyCycle: 0.5

 Terminal: 'PFI0'

 Name: ''

 ID: 'ctr0'

 Device: [1x1 daq.ni.CompactDAQModule]

MeasurementType: 'PulseGeneration'

1-26

 DutyCycle

Change the DutyCycle to 0.25 and display the channel:

ch.DutyCycle

ch =

Data acquisition counter output pulse generation channel 'ctr0' on device 'cDAQ1Mod5':

 IdleState: Low

 InitialDelay: 2.5e-08

 Frequency: 100

 DutyCycle: 0.25

 Terminal: 'PFI0'

 Name: ''

 ID: 'ctr0'

 Device: [1x1 daq.ni.CompactDAQModule]

MeasurementType: 'PulseGeneration'

You can change the channel duty cycle while the session is running when using counter
output channels.

See Also

See Also

Functions
addCounterOutputChannel

Properties
Gain | Offset | Phase

1-27

1 Base Properties — Alphabetical List

EncoderType
Encoding type of counter channel

Description

When working with the session-based interface, use the EncoderType property to
specify the encoding type of the counter input 'Position' channel.

Encoder types include:

• 'X1'

• 'X2'

• 'X4'

• 'TwoPulse'

Example

Change Encoder Type Property

Change the EncodeType property of a counter input channel with a Position
measurement type.

Create a session and add a counter input channel with Position measurement type.

s = daq.createSession('ni');

ch = addCounterInputChannel(s,'cDAQ1Mod5', 'ctr0', 'Position')

ch =

Data acquisition counter input position channel 'ctr0' on device 'cDAQ1Mod5':

 EncoderType: X1

 ZResetEnable: 0

 ZResetValue: 0

ZResetCondition: BothHigh

 TerminalA: 'PFI0'

 TerminalB: 'PFI2'

1-28

 EncoderType

 TerminalZ: 'PFI1'

 Name: ''

 ID: 'ctr0'

 Device: [1x1 daq.ni.CompactDAQModule]

MeasurementType: 'Position'

Change the channels encoder type to X2.

ch.EncoderType = 'X2'

ch =

Data acquisition counter input position channel 'ctr0' on device 'cDAQ1Mod5':

 EncoderType: X2

 ZResetEnable: 0

 ZResetValue: 0

ZResetCondition: BothHigh

 TerminalA: 'PFI0'

 TerminalB: 'PFI2'

 TerminalZ: 'PFI1'

 Name: ''

 ID: 'ctr0'

 Device: [1x1 daq.ni.CompactDAQModule]

MeasurementType: 'Position

See Also

addCounterInputChannel

1-29

1 Base Properties — Alphabetical List

EnhancedAliasRejectionEnable
Set enhanced alias rejection mode

Description

Enable or disable the enhanced alias rejection on your DSA device’s analog channel. See
“Synchronize DSA Devices” for more information. Enhanced alias reject is disabled by
default. This property only takes logical values.

s.Channels(1).EnhancedAliasRejectionEnable = 1

You cannot modify enhanced rejection mode if you are synchronizing your DSA device
using AutoSyncDSA.

Example

Enable Enhanced Alias Rejection

Enable enhanced alias rejection on a DSA device.

Create a session and add an analog input voltage channel using a DSA device.

s = daq.createSession('ni');

ch = addAnalogInputChannel(s,'PXI1Slot2', 0, 'Voltage')

ch =

Data acquisition analog input voltage channel 'ai0' on device 'PXI1Slot2':

 Coupling: DC

 TerminalConfig: PseudoDifferential

 Range: -42 to +42 Volts

 Name: ''

 ID: 'ai0'

 Device: [1x1 daq.ni.PXIDSAModule]

 MeasurementType: 'Voltage'

EnhancedAliasRejectionEnable: 0

Enable enhanced alias rejection.

1-30

 EnhancedAliasRejectionEnable

ch.EnhancedAliasRejectionEnable = 1

ch =

Data acquisition analog input voltage channel 'ai0' on device 'PXI1Slot2':

 Coupling: DC

 TerminalConfig: PseudoDifferential

 Range: -42 to +42 Volts

 Name: ''

 ID: 'ai0'

 Device: [1x1 daq.ni.PXIDSAModule]

 MeasurementType: 'Voltage'

EnhancedAliasRejectionEnable: 1

See Also
AutoSyncDSA

1-31

1 Base Properties — Alphabetical List

ExcitationCurrent
Voltage of external source of excitation

Description

When working with the session-based interface, the ExcitationCurrent property
indicates the current in amps that you use to excite an IEPE accelerometer, IEPE
microphone, generic IEPE sensors, and RTDs.

The default ExcitationCurrent is typically determined by the device. If the device
supports an range of excitation currents, the default will be the lowest available value in
the range.

Example

Change Excitation Current Value

Change the excitation current value of a microphone channel.

Create a session and add an analog input microphone channel.

s = daq.createSession('ni');

ch = addAnalogInputChannel(s,'cDAQ1Mod3', 0, 'Microphone')

ch =

Data acquisition analog input microphone channel 'ai0' on device 'cDAQ1Mod3':

 Sensitivity: 'Unknown'

MaxSoundPressureLevel: 'Unknown'

 ExcitationCurrent: 0.002

 ExcitationSource: Internal

 Coupling: AC

 TerminalConfig: PseudoDifferential

 Range: -5.0 to +5.0 Volts

 Name: ''

 ID: 'ai0'

 Device: [1x1 daq.ni.CompactDAQModule]

1-32

 ExcitationCurrent

 MeasurementType: 'Microphone'

 ADCTimingMode: ''

Change the excitation current value to 0.0040.

ch.ExcitationCurrent = .0040

ch =

Data acquisition analog input microphone channel 'ai0' on device 'cDAQ1Mod3':

 Sensitivity: 'Unknown'

MaxSoundPressureLevel: 'Unknown'

 ExcitationCurrent: 0.004

 ExcitationSource: Internal

 Coupling: AC

 TerminalConfig: PseudoDifferential

 Range: -5.0 to +5.0 Volts

 Name: ''

 ID: 'ai0'

 Device: [1x1 daq.ni.CompactDAQModule]

 MeasurementType: 'Microphone'

 ADCTimingMode: ''

See Also

Properties

ExcitationSource

Functions

addAnalogInputChannel

1-33

1 Base Properties — Alphabetical List

ExcitationSource
External source of excitation

Description

When working with the session-based interface, the ExcitationSource property
indicates the source of ExcitationVoltage for bridge measurements or
ExcitationCurrent for IEPE sensors and RTDs. Excitation source can be:

• Internal

• External

• None

• Unknown

By default, ExcitationSource is set to Unknown.

Example

Change Excitation Source

Change the excitation source of a microphone channel.

Create a session and add an analog input microphone channel.

s = daq.createSession('ni');

ch = addAnalogInputChannel(s,'cDAQ1Mod3',0,'Microphone')

ch =

Data acquisition analog input microphone channel 'ai0' on device 'cDAQ1Mod3':

 Sensitivity: 'Unknown'

MaxSoundPressureLevel: 'Unknown'

 ExcitationCurrent: 0.004

 ExcitationSource: Unknown

 Coupling: AC

1-34

 ExcitationSource

 TerminalConfig: PseudoDifferential

 Range: -5.0 to +5.0 Volts

 Name: ''

 ID: 'ai0'

 Device: [1x1 daq.ni.CompactDAQModule]

 MeasurementType: 'Microphone'

 ADCTimingMode: ''

Change the excitation source value to 'Internal'.

ch.ExcitationSource = 'Internal'

ch =

Data acquisition analog input microphone channel 'ai0' on device 'cDAQ1Mod3':

 Sensitivity: 'Unknown'

MaxSoundPressureLevel: 'Unknown'

 ExcitationCurrent: 0.004

 ExcitationSource: Internal

 Coupling: AC

 TerminalConfig: PseudoDifferential

 Range: -5.0 to +5.0 Volts

 Name: ''

 ID: 'ai0'

 Device: [1x1 daq.ni.CompactDAQModule]

 MeasurementType: 'Microphone'

 ADCTimingMode: ''

See Also

Properties

ExcitationCurrent

ExcitationVoltage

Functions

addAnalogInputChannel

1-35

1 Base Properties — Alphabetical List

ExcitationVoltage
Voltage of excitation source

Description

When working with RTD measurements in the session-based interface, the
ExcitationVoltage property indicates the excitation voltage value to apply to bridge
measurements.

The default ExcitationVoltage is typically determined by the device. If the device
supports a range of excitation voltages, the default will be the lowest available value in
the range.

See Also

Properties

ExcitationSource

1-36

 ExternalTriggerTimeout

ExternalTriggerTimeout
Indicate if external trigger timed out

Description

When working with the session-based interface, the ExternalTriggerTimeout
property indicates time the session waits before an external trigger times out.

Example

Specify External Trigger Timeout

Specify how long the session waits for an external trigger before timing out.

Create a session and click on the Properties link to display session properties.

s = daq.createSession('ni')

s =

Data acquisition session using National Instruments hardware:

 Will run for 1 second (1000 scans) at 1000 scans/second.

 No channels have been added.

Properties, Methods, Events

 AutoSyncDSA: false

 NumberOfScans: 1000

 DurationInSeconds: 1

 Rate: 1000

 IsContinuous: false

 NotifyWhenDataAvailableExceeds: 100

IsNotifyWhenDataAvailableExceedsAuto: true

 NotifyWhenScansQueuedBelow: 500

 IsNotifyWhenScansQueuedBelowAuto: true

 ExternalTriggerTimeout: 10

 TriggersPerRun: 1

 Vendor: National Instruments

1-37

1 Base Properties — Alphabetical List

 Channels: ''

 Connections: ''

 IsRunning: false

 IsLogging: false

 IsDone: false

 IsWaitingForExternalTrigger: false

 TriggersRemaining: 1

 RateLimit: ''

 ScansQueued: 0

 ScansOutputByHardware: 0

 ScansAcquired: 0

Change the timeout to 15 seconds.

s.ExternalTriggerTimeout = 15

s =

Data acquisition session using National Instruments hardware:

 Will run for 1 second (1000 scans) at 1000 scans/second.

 No channels have been added.

See Also

addTriggerConnection

1-38

 Frequency

Frequency

Frequency of generated output

Description

When working with counter input channels, use the Frequency property to set the pulse
repetition rate of a counter input channel .

When working with function generation channel, data acquisition sessions, the rate
of a waveform is controlled by the channel’s Frequency property. To synchronize all
operation sin the session, set each channel’s generation rate individually, and change the
session Rate to match the channel’s generation rate.

The frequency value must fall within the specified FrequencyLimit values.

Values

Specify the frequency in hertz.

Examples

Set the Frequency of a Counter Input Channel

Create a session object and add a 'PulseGeneration' counter output channel:

s = daq.createSession('ni');

ch = addCounterOutputChannel(s,'cDAQ1Mod5', 'ctr0', 'PulseGeneration')

Change the Frequency to 200 and display the channel:

ch.Frequency = 200;

ch

1-39

1 Base Properties — Alphabetical List

ans =

Data acquisition counter output pulse generation channel 'ctr0' on device 'cDAQ1Mod5':

 IdleState: Low

 InitialDelay: 2.5e-008

 Frequency: 200

 DutyCycle: 0.5

 Terminal: 'PFI12'

 Name: empty

 ID: 'ctr0'

 Device: [1x1 daq.ni.DeviceInfo]

 MeasurementType: 'PulseGeneration'

Set the Frequency of a Function Generator Channel

Create a waveform generation channel, and change the generation rate to 20000 scans
per second.

s = daq.createSession('digilent'):

fgenCh = addFunctionGeneratorChannel(s, 'AD1', 1, 'Sine'

fgenCh.Frequency = 20000

fgenCh =

Data acquisition sine waveform generator '1' on device 'AD1':

 Phase: 0

 Range: -5.0 to +5.0 Volts

 TerminalConfig: SingleEnded

 Gain: 1

 Offset: 0

 Frequency: 20000

 WaveformType: Sine

 FrequencyLimit: [0.0 25000000.0]

 Name: ''

 ID: '1'

 Device: [1x1 daq.di.DeviceInfo]

 MeasurementType: 'Voltage'

Tip: You can change the channel frequency while the session is running when using
counter output channels.

1-40

 Frequency

See Also

See Also

Functions
addCounterInputChannel | addFunctionGeneratorChannel

Properties
FrequencyLimit

1-41

1 Base Properties — Alphabetical List

Gain
Waveform output gain

Description

When using waveform function generation channels, Gain represents the value by which
the scaled waveform data is multiplied to get the output data.

Values

The waveform gain can be between –5 and 5. Ensure that Gain x Voltage + Offset
falls within the valid rages of output voltage of the device.

Example

Change the gain of the waveform function generation channel to 2 volts.

s = daq.createSession('digilent');

fgenCh = addFunctionGeneratorChannel(s, 'AD1', 1, 'Sine');

fgenCh.Gain = 2

fgenCh =

Data acquisition sine waveform generator '1' on device 'AD1':

 Phase: 0

 Range: -5.0 to +5.0 Volts

 TerminalConfig: SingleEnded

 Gain: 2

 Offset: 0

 Frequency: 4096

 WaveformType: Sine

 FrequencyLimit: [0.0 25000000.0]

 Name: ''

 ID: '1'

 Device: [1x1 daq.di.DeviceInfo]

 MeasurementType: 'Voltage'

1-42

 Gain

See Also

See Also

Functions
addFunctionGeneratorChannel

Properties
DutyCycle | Offset | Phase

1-43

1 Base Properties — Alphabetical List

FrequencyLimit
Limit of rate of operation based on hardware configuration

Description

In the session-based interface, the read-only FrequencyLimit property displays the
minimum and maximum rates that the function generation channel supports.

Tip: FrequencyLimit changes dynamically as the channel configuration changes.

Example

View waveform function generation channel’s generation rate limit.

s = daq.createSession('digilent')

fgenCh = addFunctionGeneratorChannel(s, 'AD1', 1, 'Sine')

fgenCh.FrequencyLimit

ans =

[0.0 25000000.0]

See Also

Properties

Frequency

1-44

 ID

ID
ID of channel in session

Description

When working with the session-based interface, the ID property displays the ID of the
channel. You set the channel ID when you add the channel to a session object.

Examples

Create a session object, and add a counter input channel with the ID 'ctr0'.
s = daq.createSession('ni');

ch = addCounterInputChannel (s,'cDAQ1Mod5', 'ctr0', 'EdgeCount')

ch=

Data acquisition counter input edge count channel 'ctr0' on device 'cDAQ1Mod5':

 ActiveEdge: Rising

 CountDirection: Increment

 InitialCount: 0

 Terminal: 'PFI8'

 Name: empty

 ID: 'ctr0'

 Device: [1x1 daq.ni.DeviceInfo]

 MeasurementType: 'EdgeCount'

Change CountDirection to 'Decrement':

ch.CountDirection = 'Decrement'

ch=

Data acquisition counter input edge count channel 'ctr0' on device 'cDAQ1Mod5':

 ActiveEdge: Rising

 CountDirection: Decrement

 InitialCount: 0

 Terminal: 'PFI8'

 Name: empty

 ID: 'ctr0'

 Device: [1x1 daq.ni.DeviceInfo]

 MeasurementType: 'EdgeCount'

1-45

1 Base Properties — Alphabetical List

See Also

addCounterInputChannel

1-46

 IdleState

IdleState
Default state of counter output channel

Description

When working with the session-based interface, the IdleState property indicates the
default state of the counter output channel with a 'PulseGeneration' measurement
type when the counter is not running.

Values

IdleState is either 'High' or 'Low'.

Examples

Create a session object and add a 'PulseGeneration' counter output channel:

s = daq.createSession('ni');

s.addCounterOutputChannel('cDAQ1Mod5', 'ctr0', 'PulseGeneration');

Change the IdleState property to 'High' and display the channel:

s.Channels.IdleState = 'High';

s.Channels

ans =

Data acquisition counter output pulse generation channel 'ctr0' on device 'cDAQ1Mod5':

 IdleState: High

 InitialDelay: 2.5e-008

 Frequency: 100

 DutyCycle: 0.5

 Terminal: 'PFI12'

 Name: empty

 ID: 'ctr0'

1-47

1 Base Properties — Alphabetical List

 Device: [1x1 daq.ni.DeviceInfo]

 MeasurementType: 'PulseGeneration'

See Also

addCounterOutputChannel

1-48

 InitialDelay

InitialDelay

Delay until output channel generates pulses

Description

When working with the session-based interface, use the InitialDelay property to set
an initial delay on the counter output channel in which the counter is running but does
not generate any pulse.

Example

Specify Initial Delay

Set the initial delay on a counter output channel to 3.

Create a session and add a counter input channel.

s = daq.createSession('ni');

ch = addCounterOutputChannel(s,'cDAQ1Mod5', 'ctr0', 'PulseGeneration');

Set the initial delay.

ch.InitialDelay = 3

ch =

Data acquisition counter output pulse generation channel 'ctr0' on device 'cDAQ1Mod5':

 IdleState: Low

 InitialDelay: 3

 Frequency: 100

 DutyCycle: 0.5

 Terminal: 'PFI0'

 Name: ''

 ID: 'ctr0'

 Device: [1x1 daq.ni.CompactDAQModule]

1-49

1 Base Properties — Alphabetical List

MeasurementType: 'PulseGeneration'

See Also

addCounterOutputChannel

1-50

 InitialCount

InitialCount
Specify initial count point

Description

When working with the session-based interface, use the InitialCount property to set
the point from which the device starts the counter.

Values

Examples

Create a session object, add counter input channel, and change the InitialCount.
s = daq.createSession('ni');

ch = addCounterInputChannel(s,'cDAQ1Mod5', 0, 'EdgeCount')

ch =

Data acquisition counter input edge count channel 'ctr0' on device 'cDAQ1Mod5':

 ActiveEdge: Rising

 CountDirection: Increment

 InitialCount: 0

 Terminal: 'PFI8'

 Name: empty

 ID: 'ctr0'

 Device: [1x1 daq.ni.DeviceInfo]

 MeasurementType: 'EdgeCount'

Change InitalCount to 15:

ch.InitialCount = 15

ch =

Data acquisition counter input edge count channel 'ctr0' on device 'cDAQ1Mod5':

 ActiveEdge: Rising

 CountDirection: Increment

 InitialCount: 15

1-51

1 Base Properties — Alphabetical List

 Terminal: 'PFI8'

 Name: empty

 ID: 'ctr0'

 Device: [1x1 daq.ni.DeviceInfo]

 MeasurementType: 'EdgeCount'

See Also

addCounterInputChannel

1-52

 IsContinuous

IsContinuous

Specify if operation continues until manually stopped

Description

When working with the session-based interface, use IsContinuous to specify that the
session operation runs until you execute stop. When set to true, the session will run
continuously, acquiring or generating data until stopped.

Values

{false}
Set the IsContinuous property to false to make the session operation stop
automatically. This property is set to false by default.

true

Set the IsContinuous property to true to make the session operation run until you
execute stop.

Examples

Create a session object, add an analog input channel, and set the session to run until
manually stopped:
s = daq.createSession('ni');

addAnalogInputChannel(s,'cDAQ1Mod1','ai0','voltage');

s.IsContinuous = true

s =

Data acquisition session using National Instruments hardware:

 Will run continuously at 1000 scans/second until stopped.

 Operation starts immediately.

 Number of channels: 1

 index Type Device Channel MeasurementType Range Name

 ----- ---- --------- ------- ----------------- ---------------- ----

 1 ai cDAQ1Mod1 ai0 Voltage (Diff) -10 to +10 Volts

1-53

1 Base Properties — Alphabetical List

See Also

Properties

IsDone

Functions

stop,startBackground

1-54

 IsDone

IsDone
Indicate if operation is complete

Description

When working with the session-based interface, the read-only IsDone property indicates
if the session operation is complete.

Tip: IsDone indicates if the session object has completed acquiring or generating data.
IsRunning indicates if the operation is in progress, but the hardware may not be
acquiring or generating data. IsLogging indicates that the hardware is acquiring or
generating data.

Values
true

Value is true if the operation is complete.
false

Value is false if the operation is not complete.

Examples

Create an acquisition session and see if the operation is complete:

s = daq.createSession('ni');

addAnalogOutputChannel(s,'cDAQ1Mod2', 'ao1', 'vVoltage');

s.queueOutputData(linspace(-1, 1, 1000)');

s.startBackground();

s.IsDone

ans =

 0

Issue a wait and see if the operation is complete:

1-55

1 Base Properties — Alphabetical List

wait(s)

s.IsDone

ans =

 1

See Also

startBackground

1-56

 IsLogging

IsLogging
Indicate if hardware is acquiring or generating data

Description

When working with the session-based interface, the status of the read-only IsLogging
property indicates if the hardware is acquiring or generating data.

Tip: IsLogging indicates that the hardware is acquiring or generating data. IsRunning
indicates if the operation is in progress, but the hardware might not be acquiring or
generating data. IsDone indicates if the session object has completed acquiring or
generating data.

Values
true

Value is true if the device is acquiring or generating data.
false

Value is false if the device is not acquiring or generating data.

Examples

Create a session and see if the operation is logging:

 s = daq.createSession('ni');

 addAnalogOutputChannel(s,'cDAQ1Mod2', 'ao1', 'Voltage');

 s.queueOutputData(linspace(-1, 1, 1000)');

 startBackground(s);

 s.IsLogging

ans =

 1

Wait until the operation is complete:

1-57

1 Base Properties — Alphabetical List

wait(s)

s.IsLogging

ans =

 0

See Also

Properties

IsRunning, IsDone

Functions

startBackground

1-58

 IsNotifyWhenDataAvailableExceedsAuto

IsNotifyWhenDataAvailableExceedsAuto
Control if NotifyWhenDataAvailableExceeds is set automatically

Description

When working with the session-based interface, the
IsNotifyWhenDataAvailableExceedsAuto property indicates if the
NotifyWhenDataAvailableExceeds property is set automatically, or you have set a
specific value.

Tip: This property is typically used to set NotifyWhenDataAvailableExceeds back to
its default behavior.

Values

{true}

When the value is true, then the NotifyWhenDataAvailableExceeds property is
set automatically.

false

When the value is false, when you have set the
NotifyWhenDataAvailableExceeds property to a specific value.

Example

Enable Data Exceeds Notification

Change the IsNotifyWhenDataAvailableExceedsAuto to be able to set the
NotifyWhenDataAvailableExceeds property to a specific value.

Create a session and display the properties by clicking the Properties link.

s = daq.createSession('ni')

1-59

1 Base Properties — Alphabetical List

s =

Data acquisition session using National Instruments hardware:

 Will run for 1 second (1000 scans) at 1000 scans/second.

 No channels have been added.

Properties, Methods, Events

 AutoSyncDSA: false

 NumberOfScans: 1000

 DurationInSeconds: 1

 Rate: 1000

 IsContinuous: false

 NotifyWhenDataAvailableExceeds: 100

IsNotifyWhenDataAvailableExceedsAuto: true

 NotifyWhenScansQueuedBelow: 500

 IsNotifyWhenScansQueuedBelowAuto: true

 ExternalTriggerTimeout: 10

 TriggersPerRun: 1

 Vendor: National Instruments

 Channels: ''

 Connections: ''

 IsRunning: false

 IsLogging: false

 IsDone: false

 IsWaitingForExternalTrigger: false

 TriggersRemaining: 1

 RateLimit: ''

 ScansQueued: 0

 ScansOutputByHardware: 0

 ScansAcquired: 0

Change the IsNotifyWhenDataAvailableExceedsAuto to

s.IsNotifyWhenDataAvailableExceedsAuto = false

s =

Data acquisition session using National Instruments hardware:

 Will run for 1 second (1000 scans) at 1000 scans/second.

1-60

 IsNotifyWhenDataAvailableExceedsAuto

 No channels have been added.

See Also

Properties

NotifyWhenDataAvailableExceeds

Events

DataAvailable

1-61

1 Base Properties — Alphabetical List

IsNotifyWhenScansQueuedBelowAuto
Control if NotifyWhenScansQueuedBelow is set automatically

Description

When working with the session-based interface, the
IsNotifyWhenScansQueuedBelowAuto property indicates if the
NotifyWhenScansQueuedBelow property is set automatically, or you have set a specific
value.

Values

{true}

When the value is true, then NotifyWhenScansQueuedBelow is set automatically.
false

When the value is false, you have set NotifyWhenScansQueuedBelow property to
a specific value.

Example

Enable Notification When Scans Reach Below Specified Range

Change the IsNotifyWhenScansQueuedBelowAuto to be able to set the
NotifyWhenScansQueuedBelow property to a specific value.

Create a session and display the properties by clicking the Properties link.

s = daq.createSession('ni')

s =

Data acquisition session using National Instruments hardware:

 Will run for 1 second (1000 scans) at 1000 scans/second.

 No channels have been added.

1-62

 IsNotifyWhenScansQueuedBelowAuto

Properties, Methods, Events

 AutoSyncDSA: false

 NumberOfScans: 1000

 DurationInSeconds: 1

 Rate: 1000

 IsContinuous: false

 NotifyWhenDataAvailableExceeds: 100

IsNotifyWhenDataAvailableExceedsAuto: true

 NotifyWhenScansQueuedBelow: 500

 IsNotifyWhenScansQueuedBelowAuto: true

 ExternalTriggerTimeout: 10

 TriggersPerRun: 1

 Vendor: National Instruments

 Channels: ''

 Connections: ''

 IsRunning: false

 IsLogging: false

 IsDone: false

 IsWaitingForExternalTrigger: false

 TriggersRemaining: 1

 RateLimit: ''

 ScansQueued: 0

 ScansOutputByHardware: 0

 ScansAcquired: 0

Change the IsNotifyWhenDataAvailableExceedsAuto to

s.IsNotifyWhenScansQueuedBelowAuto = false

s =

Data acquisition session using National Instruments hardware:

 Will run for 1 second (1000 scans) at 1000 scans/second.

 No channels have been added.

See Also

Properties

NotifyWhenScansQueuedBelow, ScansQueued

1-63

1 Base Properties — Alphabetical List

Events

DataRequired

1-64

 IsRunning

IsRunning
Indicate if operation is still in progress

Description

When working with the session-based interface, the IsRunning status indicates if the
operation is still in progress.

Tip: IsRunning indicates if the operation is in progress, but the hardware may not
be acquiring or generating data. IsLogging indicates if the hardware is acquiring
or generating data. IsDone indicates if the session object has completed acquiring or
generating.

Values

true

When the value is true if the operation is in progress.
false

When the value is false if the operation is not in progress.

Examples

Create an acquisition session, add a DataAvailable event listener and start the
acquisition.

s = daq.createSession('ni');

addAnalogInputChannel(s,'cDAQ1Mod1','ai0','voltage');

lh = s.addlistener('DataAvailable', @plotData);

function plotData(src,event)

 plot(event.TimeStamps, event.Data)

end

1-65

1 Base Properties — Alphabetical List

startBackground(s);

See if the session is in progress.

s.IsRunning

ans =

 1

Wait until operation completes and see if session is in progress:

wait(s)

s.IsRunning

ans =

 0

See Also

Properties

IsLogging, IsDone

Functions

startBackground

1-66

 IsSimulated

IsSimulated
Indicate if device is simulated

Description

When working with the session-based interface, the IsSimulated property indicates if
the session is using a simulated device.

Values

true

When the value is true if the operation is in progress.
false

When the value is false if the operation is not in progress.

Examples

Discover available devices.

d = daq.getDevices

d =

Data acquisition devices:

index Vendor Device ID Description

----- ------ --------- -----------------------------

1 ni cDAQ1Mod1 National Instruments NI 9201

2 ni cDAQ2Mod1 National Instruments NI 9201

3 ni Dev1 National Instruments USB-6211

4 ni Dev2 National Instruments USB-6218

5 ni Dev3 National Instruments USB-6255

6 ni Dev4 National Instruments USB-6363

7 ni PXI1Slot2 National Instruments PXI-4461

1-67

1 Base Properties — Alphabetical List

8 ni PXI1Slot3 National Instruments PXI-4461

Examine properties of NI 9201, with the device id cDAQ1Mod1 with the index 1.

d(1)

ans =

ni: National Instruments NI 9201 (Device ID: 'cDAQ1Mod1')

 Analog input subsystem supports:

 -10 to +10 Volts range

 Rates from 0.1 to 800000.0 scans/sec

 8 channels ('ai0','ai1','ai2','ai3','ai4','ai5','ai6','ai7')

 'Voltage' measurement type

This module is in slot 4 of the 'cDAQ-9178' chassis with the name 'cDAQ1'.

Properties, Methods, Events

Click the Properties link to see the properties of the device.

 ChassisName: 'cDAQ1'

 ChassisModel: 'cDAQ-9178'

 SlotNumber: 4

 IsSimulated: true

 Terminals: [48x1 cell]

 Vendor: National Instruments

 ID: 'cDAQ1Mod1'

 Model: 'NI 9201'

 Subsystems: [1x1 daq.ni.AnalogInputInfo]

 Description: 'National Instruments NI 9201'

RecognizedDevice: true

Note that the IsSimulated value is true, indicating that this device is simulated.

See Also

Properties

IsLogging, IsDone

1-68

 IsSimulated

Functions

startBackground

1-69

1 Base Properties — Alphabetical List

IsWaitingForExternalTrigger
Indicates if synchronization is waiting for an external trigger

Description

When working with the session-based interface, the read-
onlyIsWaitingForExternalTrigger property indicates if the acquisition or generation
session is waiting for a trigger from an external device. If you have added an external
trigger, this property displays true, if not, it displays false.

See Also

addTriggerConnection

1-70

 MaxSoundPressureLevel

MaxSoundPressureLevel
Sound pressure level for microphone channels

Description

When working with the session-based interface, use the MaxSoundPressureLevel set
the maximum sound pressure of the microphone channel in decibels.

Values

The maximum sound pressure level is based on the sensitivity and the voltage range of
your device. When you sent your device Sensitivity, the MaxSoundPressureLevel
value is automatically corrected to match the specified sensitivity value and the device
voltage range. You can also specify any acceptable pressure level in decibels. Refer to
your microphone specifications for more information.

Example

Change Maximum Sound Pressure of Microphone

Change the Sensitivity of a microphone channel and set the maximum sound pressure
level to 10.

Create a session and add a microphone channel.

s = daq.createSession('ni');

ch = addAnalogInputChannel(s,'cDAQ1Mod3', 0, 'Microphone')

ch =

Data acquisition analog input microphone channel 'ai0' on device 'cDAQ1Mod3':

 Sensitivity: 'Unknown'

MaxSoundPressureLevel: 'Unknown'

 ExcitationCurrent: 0.002

 ExcitationSource: Internal

1-71

1 Base Properties — Alphabetical List

 Coupling: AC

 TerminalConfig: PseudoDifferential

 Range: -5.0 to +5.0 Volts

 Name: ''

 ID: 'ai0'

 Device: [1x1 daq.ni.CompactDAQModule]

 MeasurementType: 'Microphone'

 ADCTimingMode: ''

Set the channel’s sensitivity to 3 0.037.

ch.Sensitivity = 0.037

ch =

Data acquisition analog input microphone channel 'ai0' on device 'cDAQ1Mod3':

 Sensitivity: 0.037

MaxSoundPressureLevel: 136

 ExcitationCurrent: 0.002

 ExcitationSource: Internal

 Coupling: AC

 TerminalConfig: PseudoDifferential

 Range: -135 to +135 Pascals

 Name: ''

 ID: 'ai0'

 Device: [1x1 daq.ni.CompactDAQModule]

 MeasurementType: 'Microphone'

 ADCTimingMode: ''

Set the channel’s maximum sound pressure to 10 dbs.

ch.MaxSoundPressureLevel = 10

ch =

Data acquisition analog input microphone channel 'ai0' on device 'cDAQ1Mod3':

 Sensitivity: 0.037

MaxSoundPressureLevel: 10

 ExcitationCurrent: 0.002

 ExcitationSource: Internal

 Coupling: AC

 TerminalConfig: PseudoDifferential

 Range: -135 to +135 Pascals

1-72

 MaxSoundPressureLevel

 Name: ''

 ID: 'ai0'

 Device: [1x1 daq.ni.CompactDAQModule]

 MeasurementType: 'Microphone'

 ADCTimingMode: ''

1-73

1 Base Properties — Alphabetical List

MeasurementType

Channel measurement type

Description

When working with the session-based interface, the MeasurementType property
displays the selected measurement type for your channel.

Values

You can only use Audio measurement type with multichannel audio devices.

Counter measurement types include:

• 'EdgeCount' (input)
• 'PulseWidth' (input)
• 'Frequency'(input)
• 'Position'(input)
• 'PulseGeneration' (output)

Analog measurement types include:

• 'Voltage' (input and output)
• 'Thermocouple' (input)
• 'Current' (input and output)
• 'Accelerometer' (input)
• 'RTD' (input)
• 'Bridge' (input)
• 'Microphone' (input)
• 'IEPE' (input)

1-74

 MeasurementType

Examples

Create a session object, add a counter input channel, with the 'EdgeCount'
MeasurementType.
s = daq.createSession('ni');

ch = addCounterInputChannel (s,'cDAQ1Mod5', 0, 'EdgeCount')

ch =

Data acquisition counter input edge count channel 'ctr0' on device 'cDAQ1Mod5':

 ActiveEdge: Rising

 CountDirection: Increment

 InitialCount: 0

 Terminal: 'PFI8'

 Name: empty

 ID: 'ctr0'

 Device: [1x1 daq.ni.DeviceInfo]

 MeasurementType: 'EdgeCount'

See Also

addAnalogInputChannel, addAnalogOutputChannel, addCounterInputChannel,
addCounterOutputChannel,

1-75

1 Base Properties — Alphabetical List

Name
Specify descriptive name for the channel

Description

When you add a channel , a descriptive name is stored in Name. By default there is no
name assigned to the channel. You can change the value of Name at any time.

Values

You can specify a character vector value for the name.

Examples

Change the name of an analog input channel

Create a session and add an analog input channel.

s = daq.createSession('ni');

ch = addAnalogInputChannel(s,'Dev1', 0, 'Voltage')

ch =

Data acquisition analog input voltage channel 'ai0' on device 'Dev1':

 Coupling: DC

 TerminalConfig: Differential

 Range: -10 to +10 Volts

 Name: ''

 ID: 'ai0'

 Device: [1x1 daq.ni.DeviceInfo]

MeasurementType: 'Voltage'

Change Name to 'AI-Voltage'.

ch.Name = 'AI-Voltage'

1-76

 Name

ch =

Data acquisition analog input voltage channel 'ai0' on device 'Dev1':

 Coupling: DC

 TerminalConfig: Differential

 Range: -10 to +10 Volts

 Name: 'AI-Voltage'

 ID: 'ai0'

 Device: [1x1 daq.ni.DeviceInfo]

MeasurementType: 'Voltage'

See Also

addAnalogInputChannel

1-77

1 Base Properties — Alphabetical List

NominalBridgeResistance
Resistance of sensor

Description

When working with the session-based interface, the NominalBridgeResistance
property displays the resistance of a bridge– based sensor in ohms. This value is used to
calculate voltage.

You can specify any accepted positive value in ohms. The default value is 0 until you
change it. You must set the resistance to use the channel.

See Also

addAnalogInputChannel

1-78

 NotifyWhenDataAvailableExceeds

NotifyWhenDataAvailableExceeds
Control firing of DataAvailable event

Description

When working with the session-based interface the DataAvailable event is fired
when the scans available to the session object exceeds the value specified in the
NotifyWhenDataAvailableExceeds property.

Values

By default the DataAvailable event fires when 1/10 second worth of data is available
for analysis. To specify a different threshold change this property to control when
DataAvailable fires.

Examples

Control Firing of Data Available Event

Add an event listener to display the total number of scans acquired and fire the event
when the data available exceeds specified amount.

Create the session and add an analog input voltage channel.

s = daq.createSession('ni');

addAnalogInputChannel(s,'Dev4', 1, 'Voltage');

lh = addlistener(s,'DataAvailable', ...

 @(src, event) disp(s.ScansAcquired));

The default the Rate is 1000 scans per second. The session is automatically configured to
fire the DataAvailable notification 10 times per second.

Increase the Rate to 800,000 scans per second and the DataAvailable notification
automatically fires 10 times per second.

s.Rate = 800000;

1-79

1 Base Properties — Alphabetical List

s.NotifyWhenDataAvailableExceeds

ans =

 80000

Running the acquisition causes the number of scans acquired to be displayed by the
callback 10 times.

data = startForeground(s);

 80000

 160000

 240000

 320000

 400000

 480000

 560000

 640000

 720000

 800000

Increase NotifyWhenDataAvailableExceeds to 160,000.
NotifyWhenDataAvailableExceeds is no longer configured automatically when the
Rate changes.

s.NotifyWhenDataAvailableExceeds = 160000;

s.IsNotifyWhenDataAvailableExceedsAuto

ans =

 0

Start the acquisition. The DataAvailable event is fired only five times per second.

data = startForeground(s);

1-80

 NotifyWhenDataAvailableExceeds

 160000

 320000

 480000

 640000

 800000

Set IsNotifyWhenDataAvailableExceedsAuto back to true.

s.IsNotifyWhenDataAvailableExceedsAuto = true;

s.NotifyWhenDataAvailableExceeds

ans =

 80000

This causes NotifyWhenDataAvailableExceeds to set automatically when Rate
changes.

s.Rate = 50000;

s.NotifyWhenDataAvailableExceeds

ans =

 5000

See Also

Properties

IsNotifyWhenDataAvailableExceedsAuto

Events

DataAvailable

Functions

addlistener, startBackground

1-81

1 Base Properties — Alphabetical List

NotifyWhenScansQueuedBelow
Control firing of DataRequired event

Description

When working with the session-based interface to generate output signals
continuously, the DataRequired event is fired when you need to queue more data.
This occurs when the ScansQueued property drops below the value specified in the
NotifyWhenScansQueuedBelow property.

Values

By default the DataRequired event fires when 1/2 second worth of data remains in the
queue. To specify a different threshold, change this property value to control when the
event is fired.

Example

Control When DataRequired Event Is Fired

Specify a threshold below which the DataRequired event fires.

Create a session and add an analog output channel.

s = daq.createSession('ni')

addAnalogOutputChannel(s,'cDAQ1Mod2', 0, 'Voltage')

Queue some output data.

outputData = (linspace(-1,1,1000))';

s.queueOutputData(outputData);

Set the threshold of scans queued to 100.

s.NotifyWhenScansQueuedBelow = 100;

1-82

 NotifyWhenScansQueuedBelow

Add an anonymous listener and generate the signal in the background:

lh = s.addlistener('DataRequired', ...

@(src,event) src.queueOutputData(outputData));

startBackground(s);

See Also

Properties

ScansQueued, IsNotifyWhenScansQueuedBelowAuto

Events

DataRequired

1-83

1 Base Properties — Alphabetical List

NumberOfScans
Number of scans for operation when starting

Description

When working with the session-based interface, use the NumberOfScans property to
specify the number of scans the session will acquire during the operation. Changing
the number of scans changes the duration of an acquisition. When the session contains
output channels, NumberOfScans becomes a read only property and the number of scans
in a session is determined by the amount of data queued.

Tips

• To specify length of the acquisition, use DurationInSeconds.

• To control length of the output operation, use queueOutputData.

Values

You can change the value only when you use input channels.

Example

Change Number of Scans

Create an acquisition session, add an analog input channel, and display the
NumberOfScans.

s = daq.createSession('ni');

addAnalogInputChannel(s,'cDAQ1Mod1','ai0','Voltage');

s.NumberOfScans

ans =

1-84

 NumberOfScans

 1000

Change the NumberOfScans property.
s.NumberOfScans = 2000

s =

Data acquisition session using National Instruments hardware:

 Will run for 2000 scans (2 seconds) at 1000 scans/second.

 Operation starts immediately.

 Number of channels: 1

 index Type Device Channel MeasurementType Range Name

 ----- ---- --------- ------- ----------------- ---------------- ----

 1 ai cDAQ1Mod1 ai0 Voltage (Diff) -10 to +10 Volts

See Also

Properties

ScansQueued, DurationInSeconds

Functions

startForeground, startBackground, queueOutputData

1-85

1 Base Properties — Alphabetical List

Offset
Specify DC offset of waveform

Description

When using waveform function generation channels, Offset represents offsetting of a
signal from zero, or the mean value of the waveform.

Values

The waveform offset can be between –5 and 5. Ensure that Gain x Voltage + Offset
falls within the valid rages of output voltage of the device.

Example

Change the offset of the waveform function generation channel to 2 volts.

s = daq.createSession('digilent');

fgenCh = addFunctionGeneratorChannel(s, 'AD1', 1, 'Sine');

fgenCh.Offset = 2

fgenCh =

Data acquisition sine waveform generator '1' on device 'AD1':

 Phase: 0

 Range: -5.0 to +5.0 Volts

 TerminalConfig: SingleEnded

 Gain: 0

 Offset: 2

 Frequency: 4096

 WaveformType: Sine

 FrequencyLimit: [0.0 25000000.0]

 Name: ''

 ID: '1'

 Device: [1x1 daq.di.DeviceInfo]

 MeasurementType: 'Voltage'

1-86

 Offset

See Also

See Also

Functions
addFunctionGeneratorChannel

Properties
DutyCycle | Gain | Phase

1-87

1 Base Properties — Alphabetical List

Phase

Waveform phase

Description

In a function generation channel, the Phase property specifies the period of waveform
cycle from its point of origin. Specify the values for Phase in time units.

Example

Set the phase of a waveform function generation channel to 33.

s = daq.createSession('digilent')

fgenCh = addFunctionGeneratorChannel(s, 'AD1', 1, 'Sine')

fgenCh.Phase = 33

fgenCh =

Data acquisition sine waveform generator '1' on device 'AD1':

 Phase: 33

 Range: -5.0 to +5.0 Volts

 TerminalConfig: SingleEnded

 Gain: 1

 Offset: 0

 Frequency: 4096

 WaveformType: Sine

 FrequencyLimit: [0.0 25000000.0]

 Name: ''

 ID: '1'

 Device: [1x1 daq.di.DeviceInfo]

 MeasurementType: 'Voltage'

1-88

 Phase

See Also

See Also

Functions
addFunctionGeneratorChannel

Properties
DutyCycle | Gain | Offset

1-89

1 Base Properties — Alphabetical List

R0
Specify resistance value

Description

Use this property to specify the resistance of the device.

You can specify any acceptable value in ohms. When you add an RTD Channel, the
resistance is unknown and the R0 property displays Unknown. You must change this
value to set the resistance of this device to the temperature you want.

Example

Set RTD Channels Resistance

Create a session and add an RTD channel.

s = daq.createSession('ni');

ch = addAnalogInputChannel(s,'cDAQ1Mod7',3, 'RTD');

Change the channels resistance to 100°C.

ch.R0 = 100

ch =

Data acquisition analog input RTD channel 'ai3' on device 'cDAQ1Mod7':

 Units: Celsius

 RTDType: Unknown

 RTDConfiguration: Unknown

 R0: 100

ExcitationCurrent: 0.0005

 ExcitationSource: Internal

 Coupling: DC

 TerminalConfig: Differential

 Range: -200 to +660 Celsius

 Name: ''

1-90

 R0

 ID: 'ai3'

 Device: [1x1 daq.ni.CompactDAQModule]

 MeasurementType: 'RTD'

 ADCTimingMode: HighResolution

See Also

Properties

RTDConfiguration, RTDType

1-91

1 Base Properties — Alphabetical List

Range
Specify channel measurement range

Description

When working with the session-based interface, use the Range property to indicate the
measurement range of a channel.

Values

Range is not applicable for counter channels. For analog channels, value is dependent
on the measurement type. This property is read-only for all measurement types except
'Voltage'. You can specify a range in volts for analog channels.

Examples

Set Channel Range

Specify the range of an analog input voltage channel.

Create a session and add an analog input channel.

s = daq.createSession('ni');

ch = addAnalogInputChannel(s,'cDAQ1Mod7',3,'voltage');

Set a range of -60 to +60 volts.

ch.Range = [-60,60];

Display Ranges Available

See what ranges your channel supports before you set the channel range.

Create a session and add an analog input channel.

s = daq.createSession('ni');

1-92

 Range

ch = addAnalogInputChannel(s,'Dev1',3,'voltage');

Display channel device.

ch.Device

ans =

ni: National Instruments USB-6211 (Device ID: 'Dev1')

 Analog input subsystem supports:

 4 ranges supported

 Rates from 0.1 to 250000.0 scans/sec

 16 channels ('ai0' - 'ai15')

 'Voltage' measurement type

 Analog output subsystem supports:

 -10 to +10 Volts range

 Rates from 0.1 to 250000.0 scans/sec

 2 channels ('ao0','ao1')

 'Voltage' measurement type

 Digital subsystem supports:

 8 channels ('port0/line0' - 'port1/line3')

 'InputOnly','OutputOnly' measurement types

 Counter input subsystem supports:

 Rates from 0.1 to 80000000.0 scans/sec

 2 channels ('ctr0','ctr1')

 'EdgeCount','PulseWidth','Frequency','Position' measurement types

 Counter output subsystem supports:

 Rates from 0.1 to 80000000.0 scans/sec

 2 channels ('ctr0','ctr1')

 'PulseGeneration' measurement type

Create a subsystems object.

sub = ch.Device.Subsystems

sub =

Analog input subsystem supports:

 4 ranges supported

 Rates from 0.1 to 250000.0 scans/sec

 16 channels ('ai0' - 'ai15')

1-93

1 Base Properties — Alphabetical List

 'Voltage' measurement type

Properties, Methods, Events

Analog output subsystem supports:

 -10 to +10 Volts range

 Rates from 0.1 to 250000.0 scans/sec

 2 channels ('ao0','ao1')

 'Voltage' measurement type

Properties, Methods, Events

Digital subsystem supports:

 8 channels ('port0/line0' - 'port1/line3')

 'InputOnly','OutputOnly' measurement types

Properties, Methods, Events

Counter input subsystem supports:

 Rates from 0.1 to 80000000.0 scans/sec

 2 channels ('ctr0','ctr1')

 'EdgeCount','PulseWidth','Frequency','Position' measurement types

Properties, Methods, Events

Counter output subsystem supports:

 Rates from 0.1 to 80000000.0 scans/sec

 2 channels ('ctr0','ctr1')

 'PulseGeneration' measurement type

Properties, Methods, Events

Display the ranges available on the analog input subsystem.

sub(1).RangesAvailable

ans =

-0.20 to +0.20 Volts,-1.0 to +1.0 Volts,-5.0 to +5.0 Volts,-10 to +10 Volts

See Also

daq.createSession,addAnalogInputChannel

1-94

 Rate

Rate
Rate of operation in scans per second

Description

When working with the session-based interface, use the Rate property to set the number
of scans per second.

Note: Many hardware devices accept fractional rates.

Tip: On most devices, the hardware limits the exact rates that you can set. When you set
the rate, Data Acquisition Toolbox sets the rate to the next higher rate supported by the
hardware. If the exact rate affects your analysis of the acquired data, obtain the actual
rate after you set it, and then use that in your analysis.

Values

You can set the rate to any positive nonzero scalar value supported by the hardware in
its current configuration.

Examples

Change Session Rate

Create a session and add an analog input channel.

s = daq.createSession('ni');

addAnalogInputChannel(s,'cDAQ1Mod1','ai1','Voltage');

Change the rate to 10000.

s.Rate = 10000

s =

1-95

1 Base Properties — Alphabetical List

Data acquisition session using National Instruments hardware:

 Will run for 1 second (10000 scans) at 10000 scans/second.

 Operation starts immediately.

 Number of channels: 1

 index Type Device Channel MeasurementType Range Name

 ----- ---- --------- ------- ----------------- ---------------- ----

 1 ai cDAQ1Mod1 ai1 Voltage (Diff) -10 to +10 Volts

See Also

Properties

DurationInSeconds, NumberOfScans, RateLimit

1-96

 RateLimit

RateLimit
Limit of rate of operation based on hardware configuration

Description

In the session-based interface, the read-only RateLimit property displays the minimum
and maximum rates that the session supports, based on the device configuration for the
session.

Tip: RateLimit changes dynamically as the session configuration changes.

Example

Display Sessions Rate Limit

Create session and add an analog input channel.

s = daq.createSession('ni');

addAnalogInputChannel(s,'cDAQ1Mod1','ai1','Voltage');

Examine the session’s rate limit.

s.RateLimit

ans =

 1.0e+05 *

 0.0000 2.5000

See Also

Properties

Rate

1-97

1 Base Properties — Alphabetical List

RTDConfiguration
Specify wiring configuration of RTD device

Description

Use this property to specify the wiring configuration for measuring resistance.

When you create an RTD channel, the wiring configuration is unknown and the
RTDConfiguration property displays Unknown. You must change this to one of the
following valid configurations:

• TwoWire

• ThreeWire

• FourWire

Example

Specify Channel’s RTD Configuration

Specify an RTD channels wiring configuration.

Create a session and add an RTD channel to it.

s = daq.createSession('ni');

ch = addAnalogInputChannel(s,'cDAQ1Mod7',3, 'RTD');

Change the RTDConfiguration to ThreeWire.

ch.RTDConfiguration = 'ThreeWire'

ch =

Data acquisition analog input RTD channel 'ai3' on device 'cDAQ1Mod7':

 Units: Celsius

 RTDType: Unknown

 RTDConfiguration: ThreeWire

1-98

 RTDConfiguration

 R0: 'Unknown'

ExcitationCurrent: 0.0005

 ExcitationSource: Internal

 Coupling: DC

 TerminalConfig: Differential

 Range: -200 to +660 Celsius

 Name: ''

 ID: 'ai3'

 Device: [1x1 daq.ni.CompactDAQModule]

 MeasurementType: 'RTD'

 ADCTimingMode: HighResolution

See Also

Properties

R0, RTDType

1-99

1 Base Properties — Alphabetical List

RTDType
Specify sensor sensitivity

Description

Use this property to specify the sensitivity of a standard RTD sensor in the session-based
interface. A standard RTD sensor is defined as a 100–ohm platinum sensor.

When you create an RTD channel, the sensitivity is unknown and the RTDType property
displays Unknown. You must change this to one of these valid values:

• Pt3750

• Pt3851

• Pt3911

• Pt3916

• Pt3920

• Pt3928

Example

Set RTD Sensor Type

Set an RTD sensor’s sensitivity type.

Create a session and add an RTD channel.

s = daq.createSession('ni');

ch = addAnalogInputChannel(s,'cDAQ1Mod7',3, 'RTD');

Set the RTDType to Pt3851.

ch.RTDType = 'Pt3851'

ch =

Data acquisition analog input RTD channel 'ai3' on device 'cDAQ1Mod7':

1-100

 RTDType

 Units: Celsius

 RTDType: Pt3851

 RTDConfiguration: ThreeWire

 R0: 'Unknown'

ExcitationCurrent: 0.0005

 ExcitationSource: Internal

 Coupling: DC

 TerminalConfig: Differential

 Range: -200 to +660 Celsius

 Name: ''

 ID: 'ai3'

 Device: [1x1 daq.ni.CompactDAQModule]

 MeasurementType: 'RTD'

 ADCTimingMode: HighResolution

See Also

addAnalogInputChannel

Properties

RTDConfiguration, RTDType

1-101

1 Base Properties — Alphabetical List

ScansAcquired
Number of scans acquired during operation

Description

In the session-based interface, the ScansAcquired property displays the number of
scans acquired after you start the operation using startBackground.

Values

The read-only value represents the number of scans acquired by the hardware. This
value is reset each time you call startBackground.

Example

Display Number of Scans Acquired

Acquire analog input data and display the number of scans acquired.

Create a session, add an analog input channel,

s = daq.createSession('ni');

ch = addAnalogInputChannel(s,'Dev1','ai1','voltage');

See how many scan the session had acquired.

s.ScansAcquired

ans =

 0

Start the acquisition and see how many scans the session has acquired

startForeground(s);

s.ScansAcquired

1-102

 ScansAcquired

ans =

 1000

See Also

Properties

NumberOfScans, ScansOutputByHardware

Functions

startBackground

1-103

1 Base Properties — Alphabetical List

ScansOutputByHardware
Indicate number of scans output by hardware

Description

In the session-based interface, the ScansOutputByHardware property displays
the number of scans output by the hardware after you start the operation using
startBackground.

Tip: The value depends on information from the hardware.

Values

This read-only value is based on the output of the hardware configured for your session.

Example

Display Scans Output by Hardware

Generate data on an analog output channel and to see how many scans are output by the
hardware.

Create a session and add an analog output channel.

s = daq.createSession('ni');

ch = addAnalogOutputChannel(s,'Dev1','ao1','voltage');

Queue some output data and start the generation.

s.queueOutputData(linspace(-1, 1, 1000)');

startForeground(s);

Examine the ScansOutputByHardware property.

s.ScansOutputByHardware

1-104

 ScansOutputByHardware

ans =

 1000

See Also

Properties

ScansAcquired, ScansQueued

Functions

queueOutputData, startBackground

1-105

1 Base Properties — Alphabetical List

ScansQueued
Indicate number of scans queued for output

Description

In the session-based interface, the ScansQueued property displays the number of scans
queued for output queueOutputData. The ScansQueued property increases when you
successfully call queueOutputData. The ScansQueued property decreases when the
hardware reports that it has successfully output data.

Values

This read-only value is based on the number of scans queued.

Example

Display Scans Queued

Queue some output data to an analog output channel and examine the session properties
to see how many scans are queued.

Create a session and add an analog output channel.

s = daq.createSession('ni');

ch = addAnalogOutputChannel(s,'Dev1','ao1','voltage');

Queue some output data and call the ScansQueued property to see number of data
queued.

s.queueOutputData(linspace(-1, 1, 1000)');

s.ScansQueued

s.ScansQueued

ans =

1-106

 ScansQueued

 1000

See Also

Properties

ScansOutputByHardware

Functions

queueOutputData

1-107

1 Base Properties — Alphabetical List

Sensitivity

Sensitivity of an analog channel

Description

When working with the session-based interface, the Sensitivity property to set the
accelerometer or microphone sensor channel.

Sensitivity in an accelerometer channel is expressed as v

g
, or volts per gravity.

Sensitivity in a microphone channel is expressed as v

pa
, or volts per pascal.

Examples

Create a session object, add an analog input channel, with the 'accelerometer'
MeasurementType.
s = daq.createSession('ni');

s.addAnalogInputChannel('Dev4', 'ai0', 'accelerometer')

Data acquisition session using National Instruments hardware:

 Will run for 1 second (2000 scans) at 2000 scans/second.

 Number of channels: 1

 index Type Device Channel MeasurementType Range Name

 ----- ---- ------ ------- -------------------------- ------------------ ----

 1 ai Dev4 ai0 Accelerometer (PseudoDiff) -5.0 to +5.0 Volts

Change the Sensitivity to 10.2e-3 V/G:
ch1 = s.Channels(1)

ch1.Sensitivity = 10.2e-3

s =

Data acquisition session using National Instruments hardware:

 Will run for 1 second (2000 scans) at 2000 scans/second.

 Number of channels: 1

 index Type Device Channel MeasurementType Range Name

 ----- ---- ------ ------- -------------------------- ---------------------- ----

 1 ai Dev4 ai0 Accelerometer (PseudoDiff) -490 to +490 Gravities

1-108

 Sensitivity

See Also

addAnalogInputChannel

1-109

1 Base Properties — Alphabetical List

ShuntLocation
Indicate location of channel’s shunt resistor

Description

When working with the session-based interface, ShuntLocation on the analog input
current channel indicates if the shunt resistor is located internally on the device or
externally. Values are:

• 'Internal': when the shunt resistor is located internally.
• 'External': when the shunt resistor is located externally.

If your device supports an internal shunt resistor, this property is set to Internal by
default. If the shunt location is external, you must specify the shunt resistance value.

Example

Specify Shunt Location

Set the shunt location of an analog input current channel.

Create a session and add an analog input current channel.

s = daq.createSession('ni')

ch = addAnalogInputChannel(s,'cDAQ1Mod7',0,'Current');

Set the ShuntLocation to Internal.

ch.ShuntLocation = 'Internal'

ch =

Data acquisition analog input current channel 'ai0' on device 'cDAQ1Mod7':

 ShuntLocation: Internal

ShuntResistance: 20

 Coupling: DC

 TerminalConfig: Differential

1-110

 ShuntLocation

 Range: -0.025 to +0.025 A

 Name: ''

 ID: 'ai0'

 Device: [1x1 daq.ni.CompactDAQModule]

MeasurementType: 'Current'

 ADCTimingMode: HighResolution

See Also

See Also
ShuntResistance

1-111

1 Base Properties — Alphabetical List

ShuntResistance
Resistance value of channel’s shunt resistor

Description

When working with the session-based interface, the analog input current channel’s
ShuntResistance property indicates resistance in ohms. This value is automatically set
if the shunt resistor is located internally on the device and is read only.

Note: Before starting an analog output channel with an external shunt resistor, specify
the shunt resistance value.

Example

Specify Shunt Resistance

Set the shunt resistance of an analog input current channel.

Create a session and add an analog input current channel.

s = daq.createSession('ni')

ch = addAnalogInputChannel(s,'cDAQ1Mod7',0,'Current');

Set the ShuntLocation to External and the ShuntResistance to 20.

ch.ShuntLocation = 'External';

ch.ShuntResistance = 20

ch =

Data acquisition analog input current channel 'ai0' on device 'cDAQ1Mod7':

 ShuntLocation: External

ShuntResistance: 20

 Coupling: DC

 TerminalConfig: Differential

 Range: -0.025 to +0.025 A

1-112

 ShuntResistance

 Name: ''

 ID: 'ai0'

 Device: [1x1 daq.ni.CompactDAQModule]

MeasurementType: 'Current'

 ADCTimingMode: HighResolution

See Also

See Also
ShuntLocation

1-113

1 Base Properties — Alphabetical List

Source
Indicates trigger source terminal

Description

When working with the session-based interface, the Source property indicates the device
and terminal to which you added a trigger.

Example

View Clock Connection Source

Create an clock external clock connection and view the connection properties.

Create a session and add a digital input channel.

s = daq.createSession('ni');

ch = addDigitalChannel(s,'Dev1','Port0/Line2','InputOnly');

Add an external scan clock connection.

s.addClockConnection('External','Dev1/PFI0','ScanClock')

ans =

Scan Clock is provided externally and will be received by 'Dev1' at terminal 'PFI0'.

 Source: 'External'

 Destination: 'Dev1/PFI0'

 Type: ScanClock

See Also

DestinationaddTriggerConnection

1-114

 StandardSampleRates

StandardSampleRates
Display standard rates of sampling

Description

This property displays the standard sample rates supported by your audio device.
You can choose to use the standard rates or use values within the given range. See
UseStandardSampleRate for more information.

Standard sample rates for DirectSound audio devices are:

• 8000
• 8192
• 11025
• 16000
• 22050
• 32000
• 44100
• 47250
• 48000
• 50000
• 88200
• 96000
• 176400
• 192000
• 352800

Example

Set Rate of an Audio Session

Specify a non standard sample rate for a session with multichannel audio devices.

1-115

1 Base Properties — Alphabetical List

Create a session and add an audio channel.

s = daq.createSession('directsound')

ch = addAudioInputChannel(s,'Audio1',1);

Specify the session to use nonstandard sample rates.

s.UseStandardSampleRates = false

Data acquisition session using DirectSound hardware:

 Will run for 1 second (44100 scans) at 44100 scans/second.

 Number of channels: 1

 index Type Device Channel MeasurementType Range Name

 ----- ---- ------ ------- --------------- ------------- ----

 1 audi Audio1 1 Audio -1.0 to +1.0

Change the session rate to 85000.

s.Rate = 85000

s =

Data acquisition session using DirectSound hardware:

 Will run for 1 second (85000 scans) at 85000 scans/second.

 Number of channels: 1

 index Type Device Channel MeasurementType Range Name

 ----- ---- ------ ------- --------------- ------------- ----

 1 audi Audio1 1 Audio -1.0 to +1.0

See Also
UseStandardSampleRate | BitsPerSample | addAudioInputChannel |
addAudioOutputChannel

1-116

 Terminal

Terminal
PFI terminal of counter subsystem

Description

The Terminal property indicates the counter subsystem’s corresponding PFI terminal.

Example

Determine Counter Input Channel Terminal

Determine the terminal on the counter channel connected to your input signal.

Create a session and add a counter input channel.

s = daq.createSession('ni');

ch = addCounterInputChannel(s,'cDAQ1Mod5','ctr0','PulseWidth');

Examine the Terminal property of the channel.

ch.Terminal

ans =

PFI1

See Also

addCounterInputChannel, addCounterOutputChannel

1-117

1 Base Properties — Alphabetical List

TerminalConfig
Specify terminal configuration

Description

Use the TerminalConfig to change the configuration of your analog channel. The
property displays the hardware default configuration. You can change this to

• SingleEnded

• SingleEndedNonReferenced

• Differential

• PseudoDifferential

Example

Change Analog Channel Terminal Configuration

Change the terminal configuration of an analog input channel.

Create a session and add an analog input voltage channel.

s = daq.createSession('ni');

ch = addAnalogInputChannel(s,'dev5',0,'voltage')

ch =

Data acquisition analog input voltage channel 'ai0' on device 'Dev5':

 Coupling: DC

 TerminalConfig: Differential

 Range: -10 to +10 Volts

 Name: ''

 ID: 'ai0'

 Device: [1x1 daq.ni.DeviceInfo]

MeasurementType: 'Voltage'

Change the TerminalConfig of the channel to SingleEnded.

1-118

 TerminalConfig

ch.TerminalConfig = 'SingleEnded'

ch =

Data acquisition analog input voltage channel 'ai0' on device 'Dev5':

 Coupling: DC

 TerminalConfig: SingleEnded

 Range: -10 to +10 Volts

 Name: ''

 ID: 'ai0'

 Device: [1x1 daq.ni.DeviceInfo]

MeasurementType: 'Voltage'

See Also
addAnalogInputChannel | addAnalogOutputChannel

1-119

1 Base Properties — Alphabetical List

Terminals
Terminals available on device or CompactDAQ chassis

Description

When working with the session-based interface, the Terminals on the device or the
CompactDAQ chassis lists all available terminals. The list includes terminals available
for trigger and clock connections. When you access the Terminals property on modules
on a CompactDAQ chassis, the terminals are on the chassis, not on the module.

Examples

Display Device Terminals

Discover available devices.

d = daq.getDevices

d =

Data acquisition devices:

index Vendor Device ID Description

----- ------ --------- ------------------------------

1 ni cDAQ1Mod1 National Instruments NI 9205

2 ni cDAQ1Mod2 National Instruments NI 9263

3 ni cDAQ1Mod3 National Instruments NI 9234

4 ni cDAQ1Mod4 National Instruments NI 9201

5 ni cDAQ1Mod5 National Instruments NI 9402

6 ni cDAQ1Mod6 National Instruments NI 9213

7 ni cDAQ1Mod7 National Instruments NI 9219

8 ni cDAQ1Mod8 National Instruments NI 9265

Access the Terminals property of NI 9205 with index 1.

d(1).Terminals

ans =

1-120

 Terminals

 'cDAQ1/PFI0'

 'cDAQ1/PFI1'

 'cDAQ1/20MHzTimebase'

 'cDAQ1/80MHzTimebase'

 'cDAQ1/ChangeDetectionEvent'

 'cDAQ1/AnalogComparisonEvent'

 'cDAQ1/100kHzTimebase'

 'cDAQ1/SyncPulse0'

 'cDAQ1/SyncPulse1'

 .

 .

 .

See Also

Functions

daq.getDevices, addTriggerConnection,addClockConnection

1-121

1 Base Properties — Alphabetical List

ThermocoupleType
Select thermocouple type

Description

When working with the session-based interface, use the ThermocoupleType property to
select the type of thermocouple you will use to make your measurements. Select the type
based on the temperature range and sensitivity you need.

Values

You can set the ThermocoupleType to:

• 'J'

• 'K'

• 'N'

• 'R'

• 'S'

• 'T'

• 'B'

• 'E'

By default the thermocouple type is 'Unknown'.

Example

Specify Thermocouple Type

Create a session and add an analog input channel with 'Thermocouple' measurement
type.

s = daq.createSession('ni');

1-122

 ThermocoupleType

ch = addAnalogInputChannel(s,'cDAQ1Mod6','ai1','Thermocouple')

ch =

Data acquisition analog input thermocouple channel 'ai1' on device 'cDAQ1Mod6':

 Units: Celsius

ThermocoupleType: Unknown

 Range: 0 to +750 Celsius

 Name: ''

 ID: 'ai1'

 Device: [1x1 daq.ni.CompactDAQModule]

 MeasurementType: 'Thermocouple'

 ADCTimingMode: HighResolution

Set the ThermocoupleType property to 'J'.

ch.Thermocoupletype = 'J'

ch =

Data acquisition analog input thermocouple channel 'ai1' on device 'cDAQ1Mod6':

 Units: Celsius

ThermocoupleType: J

 Range: 0 to +750 Celsius

 Name: ''

 ID: 'ai1'

 Device: [1x1 daq.ni.CompactDAQModule]

 MeasurementType: 'Thermocouple'

 ADCTimingMode: HighResolution

See Also

addAnalogInputChannel

1-123

1 Base Properties — Alphabetical List

TriggerCondition
Specify condition that must be satisfied before trigger executes

Description

When working with the session-based interface, use the TriggerCondition property to
specify the signal condition that executes the trigger, which synchronizes operations on
devices in a session. For more information, see “Synchronization”.

Values

Set the trigger condition to RisingEdge or FallingEdge.

Examples

Specify Session Connection Trigger Condition

Create a session and add channels and trigger to the session.

s = daq.createSession('ni');

addAnalogInputChannel(s,'Dev1', 0, 'voltage');

addAnalogInputChannel(s,'Dev2', 0, 'voltage');

addTriggerConnection(s,'Dev1/PFI4','Dev2/PFI0','StartTrigger');

Change the trigger condition to FallingEdge.

connection = s.Connections(1)

connection.TriggerCondition = 'FallingEdge'

s =

Data acquisition session using National Instruments hardware:

 Will run for 1 second (1000 scans) at 1000 scans/second.

 Trigger Connection added. (Details)

1-124

 TriggerCondition

 Number of channels: 2

 index Type Device Channel MeasurementType Range Name

 ----- ---- ------ ------- --------------- ---------------- ----

 1 ai Dev1 ai0 Voltage (Diff) -10 to +10 Volts

 2 ai Dev2 ai0 Voltage (Diff) -10 to +10 Volts

Click on (Details) to see the connection details.

Start Trigger is provided by 'Dev1' at 'PFI4' and will be received by 'Dev2' at terminal 'PFI0'.

 TriggerType: 'Digital'

TriggerCondition: FallingEdge

 Source: 'Dev1/PFI4'

 Destination: 'Dev2/PFI0'

 Type: StartTrigger

See Also

addTriggerConnection

Properties

TriggerType

1-125

1 Base Properties — Alphabetical List

TriggersPerRun
Indicate the number of times the trigger executes in an operation

Description

When working with the session-based interface, the TriggersPerRun property indicates
the number of times the specified trigger executes for one acquisition or generation
session.

Examples

Specify Number of Triggers Per Operation

Create a session and add channels and trigger to the session.

s = daq.createSession('ni');

addAnalogInputChannel(s,'Dev1', 0, 'voltage');

addAnalogInputChannel(s,'Dev2', 0, 'voltage');

addTriggerConnection(s,'Dev1/PFI4','Dev2/PFI0','StartTrigger');

Display Session’s TriggersPerRun Property.

s.TriggersPerRun

ans =

 1

Set the trigger to run twice during the operation.

s.TriggersPerRun = 2

s =

Data acquisition session using National Instruments hardware:

 Will run 2 times for 1 second (1000 scans) at 1000 scans/second.

 Trigger Connection added. (Details)

1-126

 TriggersPerRun

 Number of channels: 2

 index Type Device Channel MeasurementType Range Name

 ----- ---- ------ ------- --------------- ---------------- ----

 1 ai Dev1 ai0 Voltage (Diff) -10 to +10 Volts

 2 ai Dev2 ai0 Voltage (Diff) -10 to +10 Volts

See Also

addTriggerConnection

1-127

1 Base Properties — Alphabetical List

TriggersRemaining
Indicates the number of trigger to execute in an operation

Description

When working with the session-based interface, the TriggersRemaining property
indicates the number of trigger remaining for this acquisition or generation session. This
value depends on the number of triggers set using TriggersPerRun.

Examples

Display Number of Triggers Remaining in Operation

Create a session and add channels and trigger to the session.

s = daq.createSession('ni');

addAnalogInputChannel(s,'Dev1', 0, 'voltage');

addAnalogInputChannel(s,'Dev2', 0, 'voltage');

addTriggerConnection(s,'Dev1/PFI4','Dev2/PFI0','StartTrigger');

Display Session’s TriggersRemaining Property.

s.TriggersRemaining

ans =

 1

See Also

addTriggerConnection

1-128

 TriggerType

TriggerType
Type of trigger executed

Description

This read-only property displays the type of trigger that the source device executes to
synchronize operations in the session. Currently all trigger types are digital.

See Also

Functions

addTriggerConnection

Properties

TriggerCondition

1-129

1 Base Properties — Alphabetical List

Type
Display synchronization trigger type

Description

When working with the session-based interface, this property displays the trigger type

Characteristics

Usage AI, AO, common to all channels and per channel; DIO,
common to all lines and per line

Access Read-only
Data type Character vector
Read-only when running N/A

Values

Device Objects

For device objects, Type has these possible values:

Analog Input The device object type is analog input.
Analog Output The device object type is analog output.
Digital IO The device object type is digital I/O.

The value is automatically defined after the device object is created.

Channels and Lines

For channels, the only value of Type is Channel. For lines, the only value of Type is
Line. The value is automatically defined when channels or lines are added to the device
object.

1-130

 Units

Units
Specify unit of RTD measurement

Description

Use this property to specify the temperature unit of the analog input channel with RTD
measurement type in the session-based interface.

You can specify temperature values as:

• Celsius (Default)
• Fahrenheit

• Kelvin

• Rankine

Example

Change RTD Unit

Change the unit of an RTD channel.

Create a session, add an analog input RTD channel, and display channel properties.

s = daq.createSession('ni');

ch = addAnalogInputChannel(s,'cDAQ1Mod7', 0, 'RTD')

ch =

Data acquisition analog input RTD channel 'ai0' on device 'cDAQ1Mod7':

 Units: Celsius

 RTDType: Unknown

 RTDConfiguration: Unknown

 R0: 'Unknown'

ExcitationCurrent: 0.0005

 ExcitationSource: Internal

 Coupling: DC

1-131

1 Base Properties — Alphabetical List

 TerminalConfig: Differential

 Range: -200 to +660 Celsius

 Name: ''

 ID: 'ai0'

 Device: [1x1 daq.ni.CompactDAQModule]

 MeasurementType: 'RTD'

 ADCTimingMode: HighResolution

Change the Units property from Celsius to Fahrenheit.

ch.Units = 'Fahrenheit'

ch =

Data acquisition analog input RTD channel 'ai0' on device 'cDAQ1Mod7':

 Units: Fahrenheit

 RTDType: Unknown

 RTDConfiguration: Unknown

 R0: 'Unknown'

ExcitationCurrent: 0.0005

 ExcitationSource: Internal

 Coupling: DC

 TerminalConfig: Differential

 Range: -328 to +1220 Fahrenheit

 Name: ''

 ID: 'ai0'

 Device: [1x1 daq.ni.CompactDAQModule]

 MeasurementType: 'RTD'

 ADCTimingMode: HighResolution

See Also

Class

addAnalogInputChannel

1-132

 UseStandardSampleRate

UseStandardSampleRate
Configure session to use standard sample rates

Description

Use this property to specify if your audio channel uses standard sample rates supported
by your device or a user-specified value. To use non-standard sample rates, set the value
to false and set the sessions’s Rate to the desired value.

Example

Change Acquisition Rate

Add an audio channel to a session and change the UseStandardSampleRates property.

s = daq.createSession('directsound');

addAudioInputChannel(s,Audio1,1);

s.UseStandardSampleRates = false

s =

Data acquisition session using DirectSound hardware:

 Will run for 1 second (44100 scans) at 44100 scans/second.

 Number of channels: 1

 index Type Device Channel MeasurementType Range Name

 ----- ---- ------ ------- --------------- ------------- ----

 1 audi Audio1 1 Audio -1.0 to +1.0

Specify a different scan rate.

s.Rate = 8500

s =

Data acquisition session using DirectSound hardware:

 Will run for 1 second (8500 scans) at 8500 scans/second.

 Number of channels: 1

 index Type Device Channel MeasurementType Range Name

1-133

1 Base Properties — Alphabetical List

 ----- ---- ------ ------- --------------- ------------- ----

 1 audi Audio3 1 Audio -1.0 to +1.0

See Also
StandardSampleRates | Rate | addAudioInputChannel |
addAudioOutputChannel

1-134

 Vendor

Vendor

Vendor information associated with session object

Description

In the session-based interface, the Vendor property displays information about the
vendor.

Values

a daq.Vendor object that represents the vendor associated with the session.

Examples

Use the daq.getVendors to get information about vendors.

s = daq.createSession('ni');

v = s.Vendor

v =

Data acquisition vendor 'National Instruments':

 ID: 'ni'

 FullName: 'National Instruments'

AdaptorVersion: '3.3 (R2013a)'

 DriverVersion: '9.2.3 NI-DAQmx'

 IsOperational: true

Properties, Methods, Events

Additional data acquisition vendors may be available as downloadable support packages.

Open the Support Package Installer to install additional vendors.

1-135

1 Base Properties — Alphabetical List

See Also

daq.createSession

1-136

 WaveformType

WaveformType
Function generator channel waveform type

Description

This read-only property displays the channel waveform type that you specified while
creating a function generator channel in a session. Supported waveform types are:

• 'Sine’

• 'Square’

• 'Triangle’

• 'RampUp’

• 'RampDown’

• 'DC’

• 'Arbitrary’

Example

Display the channel’s waveform type.

fgenCh.WaveformType

ans =

 Sine

1-137

1 Base Properties — Alphabetical List

ZResetCondition
Reset condition for Z-indexing

Description

When working with the session-based interface, use the ZResetCondition property to
specify reset conditions for Z-indexing of counter Input 'Position' channels. Accepted
values are:

• 'BothHigh'

• 'BothLow'

• 'AHigh'

• 'BHigh'

Example

Change Counter Channel Z Reset Condition

Create a session and add a counter input Position channel.

s = daq.createSession('ni');

ch = addCounterInputChannel(s,'cDAQ1Mod5',0,'Position')

ch =

Data acquisition counter input position channel 'ctr0' on device 'cDAQ1Mod5':

 EncoderType: X1

 ZResetEnable: 0

 ZResetValue: 0

ZResetCondition: BothHigh

 TerminalA: 'PFI0'

 TerminalB: 'PFI2'

 TerminalZ: 'PFI1'

 Name: ''

 ID: 'ctr0'

 Device: [1x1 daq.ni.CompactDAQModule]

1-138

 ZResetCondition

MeasurementType: 'Position'

Change the ZResetCondition to BothLow.

ch.ZResetCondition = 'BothLow'

ch =

Data acquisition counter input position channel 'ctr0' on device 'cDAQ1Mod5':

 EncoderType: X1

 ZResetEnable: 0

 ZResetValue: 0

ZResetCondition: BothLow

 TerminalA: 'PFI0'

 TerminalB: 'PFI2'

 TerminalZ: 'PFI1'

 Name: ''

 ID: 'ctr0'

 Device: [1x1 daq.ni.CompactDAQModule]

MeasurementType: 'Position'

See Also

addCounterInputChannel

1-139

1 Base Properties — Alphabetical List

ZResetEnable
Enable reset for Z-indexing

Description

Use the ZResetEnable property to allow the Z-indexing to be reset on a counter input
'Position' channel.

Example

Reset Z Indexing on Counter Channel

Create a session and add a counter input Position channel.

s = daq.createSession('ni');

ch = addCounterInputChannel(s,'cDAQ1Mod5',0,'Position')

ch =

Data acquisition counter input position channel 'ctr0' on device 'cDAQ1Mod5':

 EncoderType: X1

 ZResetEnable: 0

 ZResetValue: 0

ZResetCondition: BothHigh

 TerminalA: 'PFI0'

 TerminalB: 'PFI2'

 TerminalZ: 'PFI1'

 Name: ''

 ID: 'ctr0'

 Device: [1x1 daq.ni.CompactDAQModule]

MeasurementType: 'Position'

Change the ZResetEnable property value to 1.

ch.ZResetEnable = 1

ch =

1-140

 ZResetEnable

Data acquisition counter input position channel 'ctr0' on device 'cDAQ1Mod5':

 EncoderType: X1

 ZResetEnable: 1

 ZResetValue: 0

ZResetCondition: BothHigh

 TerminalA: 'PFI0'

 TerminalB: 'PFI2'

 TerminalZ: 'PFI1'

 Name: ''

 ID: 'ctr0'

 Device: [1x1 daq.ni.CompactDAQModule]

MeasurementType: 'Position'

See Also

Class

addCounterInputChannel

1-141

1 Base Properties — Alphabetical List

ZResetValue
Reset value for Z-indexing

Description

When working with the session-based interface, use the ZResetValue property to
specify the reset value for Z-indexing on a counter input 'Position' channel.

Example

Specify Z Indexing Value

Create a session and add a counter input Position channel.

s = daq.createSession('ni');

ch = addCounterInputChannel(s,'cDAQ1Mod5',0,'Position')

ch =

Data acquisition counter input position channel 'ctr0' on device 'cDAQ1Mod5':

 EncoderType: X1

 ZResetEnable: 0

 ZResetValue: 0

ZResetCondition: BothHigh

 TerminalA: 'PFI0'

 TerminalB: 'PFI2'

 TerminalZ: 'PFI1'

 Name: ''

 ID: 'ctr0'

 Device: [1x1 daq.ni.CompactDAQModule]

MeasurementType: 'Position'

Change the ZResetValue to 62.

ch.ZResetValue = 62

ch =

1-142

 ZResetValue

Data acquisition counter input position channel 'ctr0' on device 'cDAQ1Mod5':

 EncoderType: X1

 ZResetEnable: 1

 ZResetValue: 62

ZResetCondition: BothHigh

 TerminalA: 'PFI0'

 TerminalB: 'PFI2'

 TerminalZ: 'PFI1'

 Name: ''

 ID: 'ctr0'

 Device: [1x1 daq.ni.CompactDAQModule]

MeasurementType: 'Position'

See Also

Class

addCounterInputChannel

1-143

2

Device-Specific Properties —
Alphabetical List

2 Device-Specific Properties — Alphabetical List

Coupling
Specify input coupling mode

Description

The Coupling property indicates the coupling mode used for the analog input signal
connection. You cannot change the value for devices that support only one mode. For
devices that support both AC and DC coupling, you can specify the mode by changing this
property value.

If Coupling is set to 'DC', the signal input is connected directly to the amplifier,
allowing measurement of the complete signal including its DC bias component. This is
typically used with slowly changing signals such as temperature, pressure, or voltage
readings.

If Coupling is set to 'AC', a series capacitor is inserted between the input connector
and the amplifier, filtering out the DC bias component of the measured signal. This is
typically used with dynamic signals such as audio.

Values

'DC' Direct input connection to amplifier. Default for any device that supports DC
coupling.

'AC' Series capacitor inserted between the input connector and the amplifier.
Default for any device that supports only AC coupling.

Examples

Create a session and add an analog input channel. Then change the coupling mode to
'AC'.

s = daq.createSession('ni');

ch = addAnalogInputChannel(s,'Dev4','ai1','Voltage')

ch.Coupling = 'AC'

2-2

 Coupling

See Also

See Also

Functions
addAnalogInputChannel

Properties
Range | TerminalConfig

2-3

3

Block Reference

Analog Input
Analog Output
Analog Input (Single Sample)
Analog Output (Single Sample)
Digital Input (Single Sample)
Digital Output (Single Sample)

3 Block Reference

Analog Input
Acquire data from multiple analog channels of data acquisition device

Library

Data Acquisition Toolbox

Note: Some devices are not supported by the Simulink® blocks in Data Acquisition
Toolbox. To see if your device supports Simulink, refer to Supported Hardware.

Description

The Analog Input block opens, initializes, configures, and controls an analog data
acquisition device. The opening, initialization, and configuration of the device occur
once at the start of the model execution. During the model run time, the block acquires
data either synchronously (deliver the current block of data the device is providing) or
asynchronously (stream buffered incoming data).

The block has no input ports. It has one or more output ports, depending on the
configuration you choose in its dialog box.

Use the Analog Input block to incorporate live measured data into Simulink for:

• System characterization
• Algorithm verification
• System and algorithm modeling
• Model and design validation
• Controller design

The following diagram shows the basic analog input usage configuration, with which you
can:

3-2

http://www.mathworks.com/hardware-support/data-acquistion-software.html

 Analog Input

• Acquire data at each time step or once per model execution.
• Analyze the data, or use it as input to a system in the model.
• Optionally display results.

Notes To use this block, you need both Data Acquisition Toolbox and Simulink software.

You can use the Analog Input block only with devices that support clocked acquisition.
To acquire data using devices that do not support clocking, use the Analog Input
(Single Sample) block.

Other Supported Features

• If you have DSP System Toolbox™, you can use this block for signal applications.
• This block supports the use of Simulink Accelerator™ mode, but not Rapid

Accelerator or code generation.
• The block supports the use of model referencing, so that your model can include other

Simulink models as modular components.

For more information on these features, see the “Simulink” documentation.

Dialog Box

Use the Block Parameters dialog box to select your acquisition mode and to set other
configuration options.

3-3

3 Block Reference

Device

3-4

 Analog Input

The device from which you want to acquire data. The items in the list vary,
depending on which devices you have connected to your system. Devices in the list
are specified by adaptor or vendor name and unique device ID, followed by the model
name of the device, for example, ni Dev1 (USB-6255). The first available device is
selected by default. CompactDAQ chassis would be shown as a single device; vendor
name, chassis ID, and chassis model would be shown in the list, for example, ni
cDAQ2 (cDAQ-9172).

Acquisition Mode
Asynchronous — In asynchronous mode, the data acquisition from the device and
the simulation happen in parallel. The model initiates the acquisition from the device
when the simulation starts. Data from the device is continuously acquired into a
FIFO (first in, first out) buffer in parallel as the simulation runs. At each time step,
the model fetches data from the FIFO buffer and outputs a block of data. The data in
the FIFO buffer is contiguous according to the hardware acquisition clock.

Synchronous — In synchronous mode, the simulation is blocked while acquiring
data from the device. The model initiates the acquisition from the device at each time
step and immediately enters a wait state until the acquisition request has completed.
This is unbuffered input; the block outputs the latest block of data at each time step.

The following diagrams show the difference between synchronous and asynchronous
modes for the Analog Input block.

Synchronous Analog Input

3-5

3 Block Reference

At the first time step (T1), the acquisition is initiated for the required block of data
(B1). The simulation does not continue until B1 is completely acquired.

3-6

 Analog Input

Asynchronous Analog Input – Scenario 1

Scenario 1 shows the case when simulation speed outpaces data acquisition speed.
At the first time step (T1), the required block of data (B1) is still being acquired.
Therefore, the simulation does not continue until B1 is completely acquired.

Asynchronous Analog Input – Scenario 2

Scenario 2 shows the case when data acquisition speed outpaces simulation speed. At
the first time step (T1), the required block of data (B1) has been completely acquired.
Therefore, the simulation runs continuously.

3-7

3 Block Reference

Note: Several factors, including device hardware and model complexity, can affect
the simulation speed, causing both scenarios 1 and 2 to occur within the same
simulation.

Channels
The channel configuration table lists the hardware channels of your device, and lets
you configure them. Specify which channels to acquire data from (by default all the
channels are selected). These parameters are specified for each selected channel:

Channel ID — Hardware channel ID specified by the device. The Channel ID
column is read-only, and the parameters are defined when the device is selected.

Name — Channel name. By default the table displays any names provided by the
hardware, but you can edit the names. For example, if the device is a sound card with
two channels, you can name them Left and Right.

Module — Device ID the channel belongs to. The Module column is read-only. If
compactDAQ chassis is selected, it shows the ID of the compactDAQ module which
the channel belongs to; otherwise the ID of the device.

Measurement Type — Measurement type of the channel.

Input Range — Input ranges available for each channel supported by the hardware,
defined when a device is selected.

Terminal Configuration — Specifies the hardware terminal configuration, such as
single-ended, differential, etc. The terminal configuration options are defined by the
capabilities of the selected channel.

Coupling — Hardware coupling configuration, such as AC or DC. The coupling type
is defined when a device is selected

Number of ports
1 for all channels (default) — Output data from a single port as a matrix, with a
size of blocksize by number of channels selected.

1 per channel — Output data from N ports, where N is equal to the number of
selected channels. Each output port is a column vector with a size of blocksize-by-1.
For naming, each output port uses the channel name if one was specified, otherwise
the channel ID, for example, ai0.

3-8

 Analog Input

Input sample rate
The rate at which samples are acquired from the device, in samples per second.
This is the sampling rate for the hardware. The sample rate must be a positive real
number within the range supported by the selected hardware.

Block size
The number of data samples to output at each time step for each channel. It must
be a positive integer greater than or equal to 2, within the range supported by the
selected hardware.

Output relative timestamps
Select this option to output the relative data timestamps, one for each sample.
This option adds a new output port to the block. The data type of this port is
double, and corresponds to the time offset in seconds of the sample related to the
start of acquisition. For asynchronous acquisition, the acquisition is initiated
once at the start of model execution, the relative timestamp is a monotonically-
increasing number relative to the start of simulation. For synchronous acquisition, an
acquisition is initiated at every time step; as a result, the relative timestamp is reset
to zero every time an acquisition is initiated.

See Also

See Also

Blocks
Analog Input (Single Sample) | Analog Output | Analog Output (Single
Sample) | Digital Input (Single Sample) | Digital Output (Single
Sample)

Introduced in R2016b

3-9

3 Block Reference

Analog Output
Output data to multiple analog channels of data acquisition device

Library

Data Acquisition Toolbox

Note: Some devices are not supported by the Simulink blocks in Data Acquisition
Toolbox. To see if your device supports Simulink, refer to Supported Hardware.

Description

The Analog Output block opens, initializes, configures, and controls an analog data
acquisition device. The opening, initialization, and configuration of the device occur once
at the start of the model execution. During the model run time, the block outputs data to
the hardware synchronously (outputs the block of data as it is provided). On every time
step, the block performs a blocking synchronous write to the hardware, outputting the
entire input data.

The block has one or more input ports, depending on the option you choose in its dialog
box. It has no output ports.

The Analog Output block inherits the sample time from the driving block connected to
the input port. The valid data types of the signal at the input port are double or native
data types supported by the hardware.

Notes To use this block, you need both Data Acquisition Toolbox and Simulink software.

You can use the Analog Output block only with devices that support clocked generation.
To generate data using devices that do not support clocking, use the Analog Output
(Single Sample) block.

3-10

http://www.mathworks.com/hardware-support/data-acquistion-software.html

 Analog Output

Other Supported Features

• This block supports the use of Simulink Accelerator mode, but not Rapid Accelerator
or code generation.

• The block supports the use of model referencing, so that your model can include other
Simulink models as modular components.

For more information on these features, see the “Simulink” documentation.

Dialog Box

Use the Block Parameters dialog box to set the block configuration options.

3-11

3 Block Reference

The following diagram shows the timing of the synchronous analog output.

3-12

 Analog Output

At the first time step (T1), data output is initiated and the corresponding block of data
(B1) is output to the hardware. The simulation does not continue until B1 is output
completely.

Device
The device from which you want to generate data. The items in the list vary,
depending on which devices you have connected to your system. Devices in the list
are specified by adaptor/vendor name and unique device ID, followed by the model
name of the device, for example, ni Dev1 (USB-6255). The first available device is
selected by default. CompactDAQ chassis would be shown as a single device; vendor
name, chassis ID, and chassis model would be shown in the list, for example, ni
cDAQ2 (cDAQ-9172).

Channels
The channel configuration table lists your device hardware channels and lets you
configure them. Specify these parameters for each selected channel:

Channel ID — Hardware channel ID specified by the device. The Channel ID
column is read-only, and the parameters are defined when the device is selected.

Name — Channel name. By default the table displays any names provided by the
hardware, but you can edit the names. For example, if the device is a sound card with
two channels, you can name them Left and Right.

Module — Device ID the channel belongs to. The Module column is read-only. If a
CompactDAQ chassis is selected, it shows the ID of the CompactDAQ module which
the channel belongs to; otherwise it shows the ID of the device.

3-13

3 Block Reference

Measurement Type — Measurement type of the channel.

Output Range — Output ranges available for each channel supported by the
hardware, defined when a device is selected.

Number of ports
1 for all channels (default) — One input port on the block for all channels. Provide
data as a matrix, with a size of blocksize by number of channels.

1 per channel — N input ports on the block, where N is equal to the number
of selected channels. Provide each port’s data as a column vector with a size of
blocksize-by-1. For naming, each output port uses the channel name if one was
specified, otherwise the channel ID, for example, ai0.

Output sample rate
The rate at which samples are output from Simulink to the device, in samples per
second. This is the sampling rate for the hardware. The default is defined when a
device is selected. The sample rate must be a positive real number within the range
allowed for the selected hardware.

See Also

See Also

Blocks
Analog Input | Analog Input (Single Sample) | Analog Output (Single
Sample) | Digital Input (Single Sample) | Digital Output (Single
Sample)

Introduced in R2016b

3-14

 Analog Input (Single Sample)

Analog Input (Single Sample)
Acquire single sample from multiple analog channels of data acquisition device

Library

Data Acquisition Toolbox

Note: Some devices are not supported by the Simulink blocks in Data Acquisition
Toolbox. To see if your device supports Simulink, refer to Supported Hardware.

Description

The Analog Input (Single Sample) block opens, initializes, configures, and controls an
analog data acquisition device. The opening, initialization, and configuration of the
device occur once at the start of the model execution. The block acquires a single sample
every time step, synchronously from the device, during the model run time.

The block has no input ports. It has one or more output ports, depending on the
configuration you choose in its dialog box.

Use the Analog Input (Single Sample) block to incorporate live measured data into
Simulink for:

• System characterization
• Algorithm verification
• System and algorithm modeling
• Model and design validation

3-15

http://www.mathworks.com/hardware-support/data-acquistion-software.html

3 Block Reference

• Controller design

Analog input acquisition is done synchronously, according to the following diagram.

At the first time step (T1), data is acquired from the selected hardware channels. The
simulation does not continue until data is read from all channels.

Notes To use this block, you need both Data Acquisition Toolbox and Simulink software.

You can use Analog Input (Single Sample) block only with devices that support single
sample acquisition. If the device does not support single sample acquisition, the model
generates an error. To acquire data from devices that do not support acquisition of a
single sample (such as devices designed for sound and vibration), use the Analog Input
block.

Other Supported Features

• If you have DSP System Toolbox, you can use this block for signal applications.
• This block supports the use of Simulink Accelerator mode, but not Rapid Accelerator

or code generation.
• The block supports the use of model referencing, so that your model can include other

Simulink models as modular components.

For more information on these features, see the “Simulink” documentation.

3-16

 Analog Input (Single Sample)

Dialog Box

Use the Block Parameters dialog box to select your device and to set other configuration
options.

Device
The device from which you want to acquire data. The items in the list vary,
depending on which devices you have connected to your system. Devices in the list
are specified by adaptor/vendor name and unique device ID, followed by the name of
the device. The first available device is selected by default.

Channels
The channel configuration table lists your device hardware channels and lets you
configure them. Specify these parameters for each selected channel:

3-17

3 Block Reference

Channel ID — Hardware channel ID specified by the device. The Channel ID
column is read-only and the parameters are defined when the device is selected.

Name — Channel name. By default the table displays any names provided by the
hardware, but you can edit the names. For example, if the device is a sound card with
two channels, you can name them Left and Right.

Module — Device ID the channel belongs to. The Module column is read-only. If a
compactDAQ chassis is selected, it shows the ID of the compactDAQ module which
the channel belongs to; otherwise it shows the ID of the device.

Measurement Type — Measurement type of the channel.

Input Range — Input ranges available for each channel supported by the hardware,
defined when a device is selected.

Terminal Configuration — Hardware terminal configuration, such as single-
ended, differential, etc. The terminal configuration options are defined by the
capabilities of the selected channel.

Coupling — Hardware coupling configuration, such as AC or DC. The coupling type
is defined when a device is selected

Number of ports
1 for all channels (default) — Outputs data from a single port as a vector with an
element for each selected channel.

1 per channel — Outputs data from N ports, where N is equal to the number of
selected channels. The output for each port is a scalar value. For naming, each
output port uses the channel name if one was specified, otherwise the channel ID, for
example, ai0.

Sample time
Specifies the sample time of the block during the simulation. This is the rate at which
the block is executed during simulation. The default value is 1 (seconds). For more
information, see “What Is Sample Time?” (Simulink).

Output Timestamp
Select this option to output the absolute timestamp. This option adds a new output
port to the block. The data type of this port is double (datenum), which corresponds
to a serial date number. You can convert the data into a datetime array with the
datetime function.

3-18

 Analog Input (Single Sample)

See Also

See Also

Blocks
Analog Input | Analog Output | Analog Output (Single Sample) | Digital
Input (Single Sample) | Digital Output (Single Sample)

Introduced in R2016b

3-19

3 Block Reference

Analog Output (Single Sample)

Output single sample to multiple analog channels of data acquisition device

Library

Data Acquisition Toolbox

Note: Some devices are not supported by the Simulink blocks in Data Acquisition
Toolbox. To see if your device supports Simulink, refer to Supported Hardware.

Description

The Analog Output (Single Sample) block opens, initializes, configures, and controls
an analog data acquisition device. The opening, initialization, and configuration of the
device occur once at the start of the model execution. The block outputs a single sample
every time step, synchronously to the hardware, during the model run time.

The block has one or more input ports, depending on the option you choose in its dialog
box. It has no output ports. The valid data type of the signal at the input port is double.

The Analog Output (Single Sample) block inherits the sample time from the driving
block connected to the input port. Analog output is done synchronously, according to the
following diagram.

3-20

http://www.mathworks.com/hardware-support/data-acquistion-software.html

 Analog Output (Single Sample)

At the first time step (T1), data is output to the selected hardware channels. The
simulation does not continue until data is output to all channels.

Notes To use this block, you need both Data Acquisition Toolbox and Simulink software.

You can use the Analog Output (Single Sample) block only with devices that support
single sample output. To send data using devices that do not support acquisition of
a single sample (such as devices designed for sound and vibration), use the Analog
Output block.

Other Supported Features

• This block supports the use of Simulink Accelerator mode, but not Rapid Accelerator
or code generation.

• The block supports the use of model referencing, so that your model can include other
Simulink models as modular components.

For more information on these features, see the “Simulink” documentation.

Dialog Box

Use the Block Parameters dialog box to select your device and to set other configuration
options.

3-21

3 Block Reference

Device
The data acquisition device from which you want to acquire data. The items in the
list vary, depending on which devices you have connected to your system. Devices in
the list are specified by adaptor/vendor name and unique device ID, followed by the
model name of the device, for example, ni Dev1 (USB-6255). The first available
device is selected by default. CompactDAQ chassis would be shown as a single device;
vendor name, chassis ID, and chassis model would be shown in the list, for example,
ni cDAQ2 (cDAQ-9172).

Channels
The channel configuration table lists your device's hardware channels and lets you
configure them. These parameters are specified for each selected channel:

Channel ID — Hardware channel ID specified by the device. The Channel ID
column is read-only, and the parameters are defined when the device is selected.

3-22

 Analog Output (Single Sample)

Name — Channel name. By default the table displays any names provided by the
hardware, but you can edit the names. For example, if the device is a sound card with
two channels, you can name them Left and Right.

Module — Displays the Device ID the channel belongs to. The Module column
is read-only. If a CompactDAQ chassis is selected, it will show the ID of the
CompactDAQ module which the channel belongs to; otherwise it will show the ID of
the device.

Measurement Type — Specifies the measurement type of the channel.

Output Range — Specifies the output ranges available for each channel supported
by the hardware, and is defined when a device is selected.

Number of ports
1 for all channels (default) — One input port on the block for all channels. Provide
data as a column vector with size number of channels by 1

1 per channel — N input ports on the block, where N is equal to the number of
selected channels. Provide each port’s data size as 1-by-1. For naming, each output
port uses the channel name if one was specified, otherwise the channel ID, for
example, ai0.

Sample time
Specifies the sample time of the block during the simulation. This is the rate at which
the block is executed during simulation. The default value is 1. For more information,
see “What Is Sample Time?” (Simulink).

See Also

See Also

Blocks
Analog Input | Analog Input (Single Sample) | Analog Output | Digital
Input (Single Sample) | Digital Output (Single Sample)

Introduced in R2016b

3-23

3 Block Reference

Digital Input (Single Sample)

Acquire single sample from multiple digital lines of data acquisition device

Library

Data Acquisition Toolbox

Note: Some devices are not supported by the Simulink blocks in Data Acquisition
Toolbox. To see if your device supports Simulink, refer to Supported Hardware.

Description

The Digital Input (Single Sample) block synchronously outputs the latest scan of
data available from the digital lines selected at each simulation time step. It acquires
unbuffered digital data, and delivers this as a vector of boolean values.

The block has no input ports. It has one or more output ports, depending on the option
you choose in its dialog box.

The block inherits the sample time of the model. Digital input acquisition is done
synchronously, according to the following diagram.

3-24

http://www.mathworks.com/hardware-support/data-acquistion-software.html

 Digital Input (Single Sample)

At the first time step (T1), data is acquired from the selected hardware lines. The
simulation does not continue until data is read from all lines.

Note To use this block, you need both Data Acquisition Toolbox and Simulink software.

Other Supported Features

• This block supports the use of Simulink Accelerator mode, but not Rapid Accelerator
or code generation.

• The block supports the use of model referencing, so that your model can include other
Simulink models as modular components.

For more information on these features, see the “Simulink” documentation.

Dialog Box

Use the Block Parameters dialog box to select a device and set configuration options.

3-25

3 Block Reference

Device
The data acquisition device from which you want to acquire data. The items in the
list vary, depending on which devices you have connected to your system. Devices in
the list are specified by adaptor/vendor name and unique device ID, followed by the
name of the device. The first available device is selected by default.

Lines

3-26

 Digital Input (Single Sample)

The line configuration table lists your device’s lines and lets you configure them.
The table lists all the lines that can be configured for input. Use the check boxes and
selection buttons to specify which lines to acquire data from.

Line ID — ID of the hardware line (for example, port0/line0). This is automatically
detected and filled in by the selected device, and is read-only.

Name — Hardware line name. This is automatically detected and filled in from the
hardware, though you can edit the name.

Module — Device ID that the channel belongs to. The Module column is read-only. If
a CompactDAQ chassis is selected, it shows the ID of the CompactDAQ module which
the channel belongs to; otherwise it shows the ID of the device.

Number of ports
1 for all lines (default) — The block has only one output port for all of the lines that
are selected in the table. Acquired data is a vector of boolean values, whose size is the
number of lines.

1 per line — The block has one output port per selected line. The name of each
output port is the name specified in the table for each line. If no name is provided,
the name is the Line ID. For example, if line 2 of hardware port 3 is selected, and you
did not specify a name in the line table, port3/line2 appears in the block. Data size
for each line is 1-by-1.

Sample time
Specifies the sample time of the block during the simulation. This is the rate at which
the block is executed during simulation. The default value is 1. For more information,
see “What Is Sample Time?” (Simulink).

Output Timestamp
Select this option to output the absolute timestamp. This option adds a new output
port to the block. The data type of this port is double (datenum), which corresponds
to a serial date number. You can convert the data into a datetime array with the
datetime function.

3-27

3 Block Reference

See Also

See Also

Blocks
Analog Input | Analog Input (Single Sample) | Analog Output | Analog
Output (Single Sample) | Digital Output (Single Sample)

Introduced in R2016b

3-28

 Digital Output (Single Sample)

Digital Output (Single Sample)

Output single sample to multiple digital lines of data acquisition device

Library

Data Acquisition Toolbox

Note: Some devices are not supported by the Simulink blocks in Data Acquisition
Toolbox. To see if your device supports Simulink, refer to Supported Hardware.

Description

The Digital Output (Single Sample) block synchronously outputs the latest set of data to
the hardware at each simulation time step. It outputs unbuffered digital data. Specify
the output data as a vector of boolean values.

The block has no output ports. It can have one or more input ports, depending on the
option you choose in its dialog box. The data type of the signal at the input port must be a
logical data type.

The Digital Output (Single Sample) block inherits the sample time from the driving
block connected to the input port. Digital output is done synchronously, according to the
following diagram.

3-29

http://www.mathworks.com/hardware-support/data-acquistion-software.html

3 Block Reference

At the first time step (T1), data is output to the selected hardware lines. The simulation
does not continue until data is output to all lines.

Note To use this block, you need both Data Acquisition Toolbox and Simulink software.

Other Supported Features

• This block supports the use of Simulink Accelerator mode, but not Rapid Accelerator
or code generation.

• The block supports the use of model referencing, so that your model can include other
Simulink models as modular components.

For more information on these features, see the “Simulink” documentation.

Dialog Box

Use the Block Parameters dialog box to set configuration options.

3-30

 Digital Output (Single Sample)

Device
The device to which you want to output data. The items in the list vary, depending on
which devices you have connected to your system. Devices in the list are specified by
adaptor/vendor name and unique device ID, followed by the name of the device. The
first available device is selected by default.

Lines
The line configuration table lists your device lines and lets you configure them. The
table lists all the lines that can be configured for input.

Line ID — ID of the hardware line (for example, port0/line0). This is
automatically detected and filled in by the selected device, and is read-only.

Name — Hardware line name. This is automatically detected and filled in from the
hardware, but you can edit the name.

3-31

3 Block Reference

Module — Device ID that the channel belongs to. The Module column is read-only. If
a CompactDAQ chassis is selected, it shows the ID of the CompactDAQ module which
the channel belongs to; otherwise it shows the ID of the device.

Number of ports
1 for all lines (default) — The block has only one input port for all of the lines that
are selected in the table. Data must be a vector of boolean values, whose size is the
number of lines.

1 per line — The block has one input port per selected line. The name of each input
port is the name specified in the table for each line. If no name is provided, the name
is the Line ID. For example, if line 2 of hardware port 3 is selected, and you did not
specify a name in the line table, port3/line2 appears in the block. Data for each
line must be a 1-by-1 boolean.

Sample time
Specifies the sample time of the block during the simulation. This is the rate at which
the block is executed during simulation. The default value is 1. For more information,
see “What Is Sample Time?” (Simulink).

See Also

See Also

Blocks
Analog Input | Analog Input (Single Sample) | Analog Output | Analog
Output (Single Sample) | Digital Input (Single Sample)

Introduced in R2016b

3-32

4

Functions — Alphabetical List

4 Functions — Alphabetical List

addAnalogInputChannel
Add analog input channel

Syntax
addAnalogInputChannel(s,deviceID,channelID,measurementType)

ch = addAnalogInputChannel(s,deviceID,channelID,measurementType)

[ch,idx] = addAnalogInputChannel(s,deviceID,channelID,

measurementType)

Description
addAnalogInputChannel(s,deviceID,channelID,measurementType) adds
a channel on the device represented by deviceID, with the specified channelID,
and channel measurement type represented by measurementType, to the session s.
Measurement types are vendor-specific.

• Use daq.createSession to create a session object before you use this method.
• To use counter channels, see addCounterInputChannel.

ch = addAnalogInputChannel(s,deviceID,channelID,measurementType)

creates and returns the channel object ch.

[ch,idx] = addAnalogInputChannel(s,deviceID,channelID,

measurementType) creates and returns the object ch, representing the channel that
was added, and the index idx, which is an index into the array of the session object
Channels property.

Examples
Add an Analog Input Current Channel

s = daq.createSession('ni')

addAnalogInputChannel(s,'cDAQ1Mod3','ai0','Current');

Add an Analog Input Channel and Return Its Index

s = daq.createSession('ni')

4-2

 addAnalogInputChannel

[ch,idx] = addAnalogInputChannel(s,'cDAQ2Mod6','ai0','Thermocouple')

Add a Range of Analog Input Channels

s = daq.createSession('ni')

ch = addAnalogInputChannel(s,'cDAQ1Mod1',[0 2 4],'Voltage');

Input Arguments

s — Data acquisition session
session object handle

Data acquisition session specified as a session object handle, created using
daq.createSession. Use the data acquisition session for acquisition and generation
operations. Create one session per vendor and use that vendor session to perform all data
acquisition operations.

For a list of relevant session object properties, see the following “Tips” on page 4-4.

deviceID — Device ID
character vector or string

Device ID specified as a character vector or string, as defined by the device vendor.
Obtain the device ID by calling daq.getDevices.

Data Types: char | string

channelID — Channel ID
numeric value, character vector, or string

Channel ID specified as a numeric value, character vector, or string; or the physical
location of the channel on the device. You can add multiple channels by specifying the
channel ID as a numeric vector, or an array of character vectors or strings. The index for
this channel in the session display indicates the position of this channel in the session.
This channel ID is not the same as channel index in the session: if you add a channel
with ID 2 as the first channel in a session, the session channel index is 1.

measurementType — Channel measurement type
character vector or string

Channel measurement type specified as a character vector or string. measurementType
represents a vendor-defined measurement type. Valid measurement types include:

4-3

4 Functions — Alphabetical List

• 'Voltage'

• 'Thermocouple'

• 'Current'

• 'Accelerometer'

• 'RTD'

• 'Bridge'

• 'Microphone'

• 'IEPE'

Not all devices support all types of measurement.
Data Types: char | string

Output Arguments

ch — Analog input channel object
1-by-n array

Analog input channel that you add, returned as an object containing a 1-by-n array of
vendor-specific channel information. Use this channel object to access device and channel
properties.

idx — Channel index
numeric

Channel index returned as a numeric value. With this index, you can access the array of
the session object Channels property.

Tips

The relevant properties of the data acquisition session are:

4-4

 addAnalogInputChannel

See Also

See Also

Functions
addAnalogOutputChannel | daq.createSession | inputSingleScan |
removeChannel | startBackground | startForeground

Introduced in R2010b

4-5

4 Functions — Alphabetical List

addAnalogOutputChannel

Add analog output channel to session

Syntax

addAnalogOutputChannel(s,deviceName,channelID,measurementType)

ch = addAnalogOutputChannel(s,deviceName,channelID,measurementType)

[ch,idx] = addAnalogOutputChannel(s,deviceName,channelID,

measurementType)

Description

addAnalogOutputChannel(s,deviceName,channelID,measurementType) adds
an analog output channel on the device represented by deviceID, with the specified
channelID, and channel measurement type defined by measurementType, on the
session object s. Measurement types are vendor-specific.

• Use daq.createSession to create a session object before you use this method.
• To use counter channels, see addCounterInputChannel.

ch = addAnalogOutputChannel(s,deviceName,channelID,measurementType)

creates and returns the channel object ch, representing the channel that was added.

[ch,idx] = addAnalogOutputChannel(s,deviceName,channelID,

measurementType) creates and returns the object ch, representing the channel that
was added, and the object idx, representing the index into the array of the session object
Channels property.

Examples

Add an Analog Output Voltage Channel

s = daq.createSession('ni')

4-6

 addAnalogOutputChannel

addAnalogOutputChannel(s,'cDAQ1Mod2','ao0','Voltage');

Add Analog Output Channel and Return Its Index

s = daq.createSession('ni')

[ch,idx] = addAnalogOutputChannel(s,'cDAQ1Mod2','ao0','Voltage');

Add a Range of Analog Output Channels

s = daq.createSession('ni')

ch = addAnalogOutputChannel(s,'cDAQ1Mod8',0:3,'Current');

Input Arguments

s — Data acquisition session
session object handle

Data acquisition session specified as a session object handle, created using
daq.createSession. Create one session per vendor, and use that vendor session to
perform all data acquisition and generation operations.

For a list of relevant session object properties, see “Tips” on page 4-8.

deviceName — Device ID
character vector or string

Device ID specified as a character vector or string, as defined by the device vendor.
Obtain the device ID by calling daq.getDevices.

Data Types: char | string

channelID — Channel ID
numeric value, character vector, or string

Channel ID specified as a numeric value, character vector, or string; or the physical
location of the channel on the device. You can add multiple channels by specifying the
channel ID as a numeric vector, or an array of character vectors or strings. The index for
this channel indicates its position in the session display. The channel ID is not the same
as the channel index in the session: if you add a channel with ID 2 as the first channel in
a session, the session channel index is 1.

measurementType — Channel measurement type
character vector or string

4-7

4 Functions — Alphabetical List

Channel measurement type specified as a character vector or string. measurementType
represents a vendor-defined measurement type. Supported measurement types include:

• 'Voltage'

• 'Current'

Data Types: char | string

Output Arguments

ch — Analog output channel object
1-by-n array

Analog output channel, returned as an object containing a 1-by-n array of vendor-specific
channel information. Use this channel object to access device and channel properties.

idx — Channel index
numeric

Channel index, returned as a numeric value. With this index, you can access the array of
the session object Channels property.

Tips

The relevant properties of the data acquisition session are:

See Also

See Also

Functions
addAnalogInputChannel | daq.createSession | outputSingleScan |
removeChannel | startBackground | startForeground

Introduced in R2010b

4-8

 addAudioInputChannel

addAudioInputChannel

Add audio input channel

Syntax

ch = addAudioInputChannel(s,deviceName,channelID)

[ch,idx] = addAudioInputChannel(s,deviceName,channelID)

Description

ch = addAudioInputChannel(s,deviceName,channelID) creates and displays the
object ch representing a channel added to the session s using the device represented by
deviceName, with the specified channelID. The channel is stored in the variable ch.

[ch,idx] = addAudioInputChannel(s,deviceName,channelID) additionally
creates and displays the object idx, which is an index into the array of the session
object's Channels property.

Tips

• Use daq.createSession to create a session object before you use this method.

• To use analog channels, see addAnalogInputChannel.

Input Arguments

s — Data acquisition session
session object

Data acquisition session specified as a session object created using
daq.createSession. Use the data acquisition session for acquisition and generation
operations. Create one session per vendor and use that vendor session to perform all data
acquisition operations.

4-9

4 Functions — Alphabetical List

deviceName — Device ID
character vector or string

Device ID specified as a character vector or string, as defined by the device vendor.
Obtain the device ID by calling daq.getDevices. The channel specified for this device is
created for the session object.
Data Types: char | string

channelID — Channel ID
numeric value

Channel ID, or the physical location of the channel on the device, added to the session,
specified as numeric value. You can also add a range of channels. The index for this
channel displayed in the session indicates this channels position in the session. If you
add a channel with channel ID 1 as the first channel in a session, the session index is 1.

Output Arguments

ch — Audio input channel
channel object

Audio input channel that you add, returned as a channel object containing vendor
specific channel information. Use this channel object to access device and channel
properties.

idx — Channel index
numeric

Channel index returned as a numeric value. Through the index you can access the array
of the session object's Channels property.

Properties

Examples

Add an audio input channel

s = daq.createSession('directsound')

4-10

 addAudioInputChannel

addAudioInputChannel(s,'Audio1',1);

Add multiple audio input channels

Add two audio input channels and specify output arguments to represent the channel
object and the index.

s = daq.createSession('directsound')

[ch, idx] = addAudioInputChannel(s,'Audio1',1:2);

See Also
addAudioOutputChannel | daq.createSession | startForeground |
startBackground | removeChannel

Topics
“Hardware Discovery and Session Setup”

4-11

4 Functions — Alphabetical List

addAudioOutputChannel

Add audio output channel

Syntax

ch = addAudioOutputChannel(s,deviceName,channelID)

[ch,idx] = addAudioOutputChannel(s,deviceName,channelID)

Description

ch = addAudioOutputChannel(s,deviceName,channelID) creates and displays
the object ch representing a channel added to the session s using the device represented
by deviceName, with the specified channelID. The channel is stored in the variable ch.

[ch,idx] = addAudioOutputChannel(s,deviceName,channelID) additionally
creates and displays the object idx, which is an index into the array of the session
object's Channels property.

Tips

• Use daq.createSession to create a session object before you use this method.

• To use analog channels, see addAnalogInputChannel.

Input Arguments

s — Data acquisition session
session object

Data acquisition session specified as a session object created using
daq.createSession. Use the data acquisition session for acquisition and generation
operations. Create one session per vendor and use that vendor session to perform all data
acquisition operations.

4-12

 addAudioOutputChannel

deviceName — Device ID
character vector or string

Device ID as defined by the device vendor, specified as a character vector or string.
Obtain the device ID by calling daq.getDevices. The channel specified for this device is
created for the session object.
Data Types: char | string

channelID — Channel ID
numeric value

Channel ID, or the physical location of the channel on the device, added to the session,
specified as numeric value. You can also add a range of channels. The index for this
channel displayed in the session indicates this channels position in the session. If you
add a channel with channel ID 1 as the first channel in a session, the session index is 1.

Output Arguments

ch — Audio output channel
channel object

Analog output channel that you add, returned as a channel object containing vendor
specific channel information. Use this channel object to access device and channel
properties.

idx — Channel index
numeric

Channel index returned as a numeric value. Through the index you can access the array
of the session object's Channels property.

Properties

Examples

Add an audio output channel

s = daq.createSession ('directsound')

4-13

4 Functions — Alphabetical List

ch = addAudioOutputChannel(s,'Audio1',1);

Add multiple audio output channels

Add five audio input channels and specify output arguments to represent the channel
object and the index.

s = daq.createSession ('directsound')

[ch, idx] = addAudioOutputChannel(s,'Audio1',1);

See Also
addAudioInputChannel | daq.createSession | startForeground |
startBackground | removeChannel

Topics
“Hardware Discovery and Session Setup”

4-14

 addClockConnection

addClockConnection
Add clock connection

Syntax
addClockConnection(s,source,destination,type)

cc = addClockConnection(s,source,destination,type)

[cc,idx] = addClockConnection(s,source,destination,type)

Description
addClockConnection(s,source,destination,type) adds a clock connection from
the specified source device and terminal to the specified destination device and terminal,
of the specified connection type.

cc = addClockConnection(s,source,destination,type) adds a clock connection
from the specified source device and terminal to the specified destination device and
terminal, of the specified connection type and displays it in the variable cc.

[cc,idx] = addClockConnection(s,source,destination,type) adds a clock
connection from the specified source device and terminal to the specified destination
device and terminal, of the specified connection type and displays the connection in the
variable cc and the connection index, idx.

Tip: Before adding clock connections, create a session using daq.createSession, and
add channels to the session.

Input Arguments
s — Data acquisition session
session object

Data acquisition session, specified as a session object. Create the session object using
daq.createSession. Use the data acquisition session for acquisition and generation
operations. Create one session per vendor and use that vendor session to perform all data
acquisition operations.

4-15

4 Functions — Alphabetical List

source — Source of clock connection
character vector or string

Source for the clock connection, specified as a character vector or string. Valid values are:

• 'external' — When your clock is based on an external event.
• 'deviceID/terminal' — When your clock source is on a specific terminal on a

device in your session, for example, 'Dev1/PFI1'. For more information on device ID
see Device. For more information on terminal see Terminals.

• 'chassisId/terminal' — When your clock source is on a specific terminal on
a chassis in your session, for example, 'cDAQ1/PFI1'. For more information on
terminal see Terminals.

You can have only one clock source in a session.
Data Types: char | string

destination — Destination of clock connection
character vector or string

Destination for the clock connection, specified as a character vector or string. Valid
values are:

• 'external' — When your clock source is connected to an external device.
• 'deviceID/terminal' — When your clock source is connected to another device

in your session, for example, 'Dev1/PFI1'. For more information on device ID see
Device. For more information on terminal see Terminals.

• 'chassisId/terminal' — When your clock source is connected to a chassis in
your session, for example, 'cDAQ1/PFI1'. For more information on terminal see
Terminals.

You can also specify multiple destination devices as an array, for example, {'Dev1/
PFI1','Dev2/PFI1'}.

Data Types: char | string | cell

type — Clock connection type
character vector or string

The clock connection type, specified as a character vector or string. 'ScanClock' is the
only connection type available for clock connections at this time.

4-16

 addClockConnection

Data Types: char | string

Output Arguments

cc — Clock connection
1-by-n object array

The clock connection that you add, returned as an object containing clock connection
information.

idx — Channel index
numeric

Channel index returned as a numeric value. Through the index you can access the array
of the session object Channels property.

Properties

Examples

Add External Scan Clock

Create a session and add an analog input channel from Dev1 to the session.

s = daq.createSession('ni')

addAnalogInputChannel(s,'Dev1','ai0','Voltage');

Add a clock connection from an external device to terminal PFI1 on Dev1 using the
'ScanClock' connection type and save the connection settings to a variable:

cc = addClockConnection(s,'external','Dev1/PFI1','ScanClock');

Export Scan Clock to External Device

To add clock connection going to an external destination, create a session and add an
analog input channel from Dev1 to the session.

4-17

4 Functions — Alphabetical List

s = daq.createSession('ni')

addAnalogInputChannel(s,'Dev1','ai0','Voltage');

Add a clock from terminal PFI0 on Dev1 to an external device using the 'ScanClock'
connection type:

addClockConnection(s,'Dev1/PFI1','external','ScanClock');

See Also

See Also
addTriggerConnection | daq.createSession | removeConnection

Topics
“Import Scan Clock from External Source”
“Acquire Digital Data Using an External Clock”
“Export Scan Clock to External System”
“Acquire Digital Data Using a Shared Clock”
“Acquire Digital Data Using a Counter Output Channel as External Clock”
“Multiple-Device Synchronization Using USB or PXI Devices”
“Multiple-Chassis Synchronization with CompactDAQ Devices”
“Clock Connections”
“Synchronization”

4-18

 addCounterInputChannel

addCounterInputChannel
Add counter input channel

Syntax

addCounterInputChannel(s,deviceID,channelID)

ch = addCounterInputChannel(s,deviceID,channelID,measurementType)

[ch,idx] = addCounterInputChannel(s,deviceID,channelID,

measurementType)

Description

addCounterInputChannel(s,deviceID,channelID) adds a counter channel
on the device represented by deviceID with the specified channelID, and channel
measurement type, represented by measurementType, to the session s. Measurement
types are vendor specific.

ch = addCounterInputChannel(s,deviceID,channelID,measurementType)

returns the object ch.

[ch,idx] = addCounterInputChannel(s,deviceID,channelID,

measurementType) returns the object ch, representing the channel that was added
and the index, idx, which is an index into the array of the session object's Channels
property.

Examples

Add a Counter Input Edgecount Channel

s = daq.createSession('ni')

ch = addCounterInputChannel(s,'cDAQ1Mod5','ctr0','EdgeCount');

ch.Terminal % View device signal name for pin mapping.

Add a Counter Input Frequency Channel

Specify output arguments to represent the channel object and the index.

4-19

4 Functions — Alphabetical List

s = daq.createSession('ni')

[ch,idx] = addCounterInputChannel(s,'cDAQ1Mod5',1,'Frequency');

ch.Terminal % View device signal name for pin mapping.

Add Multiple Counter Input Channels

s = daq.createSession ('ni')

ch = addCounterInputChannel(s,'cDAQ1Mod5',[0 1 2],'EdgeCount');

• “Acquire Counter Input Data”

Input Arguments

s — Data acquisition session
session object

Data acquisition session, specified as a session object. Create the session object using
daq.createSession. Use the data acquisition session for acquisition and generation
operations. Create one session per vendor and use that vendor session to perform all data
acquisition operations.

deviceID — Device ID
character vector or string

Device ID as defined by the device vendor, specified as a character vector or string.
Obtain the device ID by calling daq.getDevices. The channel specified for this device is
created for the session object.
Data Types: char | string

channelID — Channel ID
numeric value, character vector, or string

Channel ID specified as a numeric value, character vector, or string, corresponding to the
specific counter channel on the device added to the session. Channel ID 0 corresponds to
the device counter 'ctr0', Channel ID 1 to 'ctr1', and so on. For the related device
signal names and physical pins, see the pinout for your particular device.

You can add a range of channels by specifying the channel ID with a numeric array, or an
array of character vectors or strings.

4-20

 addCounterInputChannel

The index for a channel displayed in the session indicates the channel’s position in the
session. The first channel you add in a session has session index 1, and so on.

Data Types: char | string | cell

measurementType — Channel measurement type
character vector or string

Channel measurement type, specified as a character vector or string. measurementType
represents a vendor-defined measurement type, and can include:

• 'EdgeCount'

• 'PulseWidth'

• 'Frequency'

• 'Position'

Data Types: char | string

Output Arguments

ch — Counter input channel object
1-by-n array

Counter input channel that you add, returned as an object containing a 1-by-n array of
vendor specific channel specific information. Use this channel object to access device and
channel properties. For more information on the properties, see “Properties” on page
4-21.

idx — Channel index
numeric

Channel index returned as a numeric value. Through the index you can access the array
of the session object Channels property.

Properties

The properties of the channel object are:

4-21

4 Functions — Alphabetical List

See Also

See Also

Functions
addCounterOutputChannel | inputSingleScan | removeChannel |
startBackground | startForeground

Properties
Terminal

Topics
“Acquire Counter Input Data”

Introduced in R2011a

4-22

 addCounterOutputChannel

addCounterOutputChannel
Add counter output channel

Syntax

addCounterOutputChannel(s,deviceID,channelID)

ch = addCounterOutputChannel(s,deviceID,channelID,measurementType)

[ch,idx] = addCounterOutputChannel(s,deviceID,channelID,

measurementType)

Description

addCounterOutputChannel(s,deviceID,channelID) adds a counter channel
on the device represented by deviceID with the specified channelID, and channel
measurement type, represented by measurementType, to the session s. Measurement
types are vendor specific.

ch = addCounterOutputChannel(s,deviceID,channelID,measurementType)

returns the object ch.

[ch,idx] = addCounterOutputChannel(s,deviceID,channelID,

measurementType) returns the object ch, representing the channel that was added
and the index, idx, which is an index into the array of the session object's Channels
property.

Tip: Use daq.createSession to create a session object before you use this method.

Input Arguments

s — Data acquisition session
session object

Data acquisition session, specified as a session object. Create the session object using
daq.createSession. Use the data acquisition session for acquisition and generation

4-23

4 Functions — Alphabetical List

operations. Create one session per vendor and use that vendor session to perform all data
acquisition operations.

deviceID — Device ID
character vector

Device ID as defined by the device vendor specified as a character vector. Obtain the
device ID by calling daq.getDevices. The channel specified for this device is created for
the session object.

channelID — Channel ID
numeric value, character vector, or string

Channel ID, specified as a numeric value, character vector, or string, corresponding to
the specific counter channel on the device added to the session. Channel ID 0 corresponds
to the device counter 'ctr0', Channel ID 1 to 'ctr1', and so on. For the related device
signal names and physical pins, see the pinout for your particular device.

You can add a range of channels by specifying the channel ID with a numeric array, or an
array of character vectors or strings.

The index for a channel displayed in the session indicates the channel’s position in the
session. The first channel you add in a session has session index 1, and so on.

Data Types: char | string | cell

measurementType — Channel measurement type
character vector or string

Channel measurement type, specified as a character vector or string. measurementType
represents a vendor-defined measurement type. A valid output measurement type is
'PulseGeneration'.

Output Arguments

ch — Counter output channel object
1-by-n array

Counter output channel that you add, returned as an object containing a 1-by-n array of
vendor specific channel information. Use this channel object to access device and channel
properties.

4-24

 addCounterOutputChannel

idx — Channel index
numeric

Channel index returned as a numeric value. Through the index you can access the array
of the session object's Channels property.

Properties

Examples

Add a counter output PulseGeneration channel

s = daq.createSession('ni');

ch = addCounterOutputChannel(s,'cDAQ1Mod3','ctr0','PulseGeneration');

ch.Terminal % View device signal name for pin mapping.

Add two counter output PulseGeneration channels

s = daq.createSession('ni')

ch = addCounterOutputChannel(s,'cDAQ1Mod3',0:1,'PulseGeneration')

• “Generate Pulses on a Counter Output Channel”

See Also

See Also

Functions
addCounterInputChannel | removeChannel | startBackground |
startForeground

Properties
Terminal

Topics
“Generate Pulses on a Counter Output Channel”

4-25

4 Functions — Alphabetical List

addDigitalChannel
Add digital channel

Syntax

addDigitalChannel(s,deviceID,channelID,measurementType)

ch = addDigitalChannel(s,deviceID,channelID,measurementType)

[ch,idx] = addDigitalChannel(s,deviceID,channelID,measurementType)

Description

addDigitalChannel(s,deviceID,channelID,measurementType) adds one or
more digital channels to the session s, on the device represented by deviceID, with the
specified port and single-line combination and channel measurement type.

Tips

• Before adding digital channels, create a session using daq.createSession.

• Change the Direction property value of bidirectional channels before you read or
write digital data.

• To input and output decimal or hexadecimal values, use these conversion functions:
• decimalToBinaryVector

• binaryVectorToDecimal

• hexToBinaryVector

• binaryVectorToHex

ch = addDigitalChannel(s,deviceID,channelID,measurementType) creates
and displays the digital channels assigned to ch.

[ch,idx] = addDigitalChannel(s,deviceID,channelID,measurementType)

additionally creates and displays idx, which is an index into the array of the session
object Channels property.

4-26

 addDigitalChannel

Examples

Add Digital Channels

Discover available digital devices on your system, then create a session with digital
channels.

Find all installed devices.

d = daq.getDevices

d =

Data acquisition devices:

index Vendor Device ID Description

----- ------ --------- -----------------------------

1 ni Dev1 National Instruments USB-6255

2 ni Dev2 National Instruments USB-6363

Get detailed subsystem information for NI USB-6255:

d(1)

ans =

ni: National Instruments USB-6255 (Device ID: 'Dev1')

 Analog input subsystem supports:

 7 ranges supported

 Rates from 0.1 to 1250000.0 scans/sec

 80 channels ('ai0' - 'ai79')

 'Voltage' measurement type

 Analog output subsystem supports:

 -5.0 to +5.0 Volts,-10 to +10 Volts ranges

 Rates from 0.1 to 2857142.9 scans/sec

 2 channels ('ao0','ao1')

 'Voltage' measurement type

 Digital subsystem supports:

 24 channels ('port0/line0' - 'port2/line7')

 'InputOnly','OutputOnly','Bidirectional' measurement types

 Counter input subsystem supports:

4-27

4 Functions — Alphabetical List

 Rates from 0.1 to 80000000.0 scans/sec

 2 channels ('ctr0','ctr1')

 'EdgeCount','PulseWidth','Frequency','Position' measurement types

 Counter output subsystem supports:

 Rates from 0.1 to 80000000.0 scans/sec

 2 channels ('ctr0','ctr1')

 'PulseGeneration' measurement type

Create a session with input, output, and bidirectional channels using 'Dev1':

s = daq.createSession('ni');

addDigitalChannel(s,'dev1','Port0/Line0:1','InputOnly');

ch = addDigitalChannel(s,'dev1','Port0/Line2:3','OutputOnly');

[ch,idx] = addDigitalChannel(s,'dev1','Port2/Line0:1','Bidirectional')

ans =

Data acquisition session using National Instruments hardware:

 Clocked operations using startForeground and startBackground are disabled.

 Only on-demand operations using inputSingleScan and outputSingleScan can be done.

 Number of channels: 6

 index Type Device Channel MeasurementType Range Name

 ----- ---- ------ ----------- ----------------------- ----- ----

 1 dio Dev1 port0/line0 InputOnly n/a

 2 dio Dev1 port0/line1 InputOnly n/a

 3 dio Dev1 port0/line2 OutputOnly n/a

 4 dio Dev1 port0/line3 OutputOnly n/a

 5 dio Dev1 port2/line0 Bidirectional (Unknown) n/a

 6 dio Dev1 port2/line1 Bidirectional (Unknown) n/a

• “Acquire Non-Clocked Digital Data”
• “Generate Non-Clocked Digital Data”
• “Acquire Digital Data Using an External Clock”
• “Acquire Digital Data Using a Shared Clock”
• “Acquire Digital Data Using a Counter Output Channel as External Clock”

Input Arguments

s — Data acquisition session
session object

4-28

 addDigitalChannel

Data acquisition session specified as a session object created using
daq.createSession. Use the data acquisition session for acquisition and generation
operations. Create one session per vendor and use that vendor session to perform all data
acquisition operations.

deviceID — Device ID
character vector

Device ID as defined by the device vendor specified as a character vector. Obtain the
device ID by calling daq.getDevices. The channel specified for this device is created for
the session object.
Data Types: char

channelID — Channel ID
character vector or string

Channel ID, or the physical location of the channel on the device, specified as a character
vector or string. You can add a range of channels using colon syntax, or an array of
character vectors or strings. The index for this channel in the session display indicates
this channel’s position in the session. If you add a channel with channel ID 'Dev1' as
the first channel in a session, its session index is 1.

Data Types: cell | char | string

measurementType — Channel measurement type
character vector or string

Channel measurement type specified as a character vector or string. measurementType
represents a vendor-defined measurement type. Supported measurements are:

• 'InputOnly'

• 'OutputOnly'

• 'Bidirectional'

Data Types: char | string

Output Arguments

ch — Digital channels
array of channel objects

4-29

4 Functions — Alphabetical List

Digital channels, returned as an array of channel objects. ch is a 1-by-n array, in which
each element is a channel object with vendor-specific device and channel properties. See
also the properties in “Digital Input and Output”.

idx — Channel index
numeric

Channel index returned as a numeric value. Use this index to access the channels in the
array of the session Channels property.

See Also

See Also

Functions
binaryVectorToDecimal | binaryVectorToHex | daq.createSession
| decimalToBinaryVector | hexToBinaryVector | inputSingleScan |
outputSingleScan | startBackground | startForeground

Topics
“Acquire Non-Clocked Digital Data”
“Generate Non-Clocked Digital Data”
“Acquire Digital Data Using an External Clock”
“Acquire Digital Data Using a Shared Clock”
“Acquire Digital Data Using a Counter Output Channel as External Clock”
“Digital Subsystem Channels”

Introduced in R2012b

4-30

 addFunctionGeneratorChannel

addFunctionGeneratorChannel
Add function generator channel

Before you work with function generator channels, see “Supported Hardware” and
“Create a Session ”.

Syntax

addFunctionGeneratorChannel(s,deviceID,channelID,waveformType)

[ch,idx] = addFunctionGeneratorChannel(s,deviceID,channelID,

waveformType)

Description

addFunctionGeneratorChannel(s,deviceID,channelID,waveformType) adds
a channel on the device represented by deviceID, with the specified channelID and
waveformType to the session s.

[ch,idx] = addFunctionGeneratorChannel(s,deviceID,channelID,

waveformType) creates and displays the object ch, representing the channel that
was added and the index, idx, which is an index into the array of the session object
Channels property.

Examples

Add a Function Generator Channel

Add a channel on a Digilent device with a sine waveform type.

Create a session for Digilent devices.

s = daq.createSession('digilent');

Add a channel with a sine waveform type.

addFunctionGeneratorChannel(s,'AD1',1,'Sine')

4-31

4 Functions — Alphabetical List

ans =

Data acquisition sine waveform generator '1' on device 'AD1':

 Phase: 0

 Range: -5.0 to +5.0 Volts

 TerminalConfig: SingleEnded

 Gain: 1

 Offset: 0

 SampleRate: 4096

 WaveformType: Sine

 Name: ''

 ID: '1'

 Device: [1x1 daq.di.DeviceInfo]

MeasurementType: 'Voltage'

Save the Channel Information and the Channel Index of a Function Generator Channel

Create a session for Digilent devices.

s = daq.createSession('digilent');

Add a channel with a sine waveform type.

[ch,idx] = addFunctionGeneratorChannel(s,'AD1',1,'Sine')

ch =

Data acquisition sine waveform generator '1' on device 'AD1':

 Phase: 0

 Range: -5.0 to +5.0 Volts

 TerminalConfig: SingleEnded

 Gain: 1

 Offset: 0

 SampleRate: 4096

 WaveformType: Sine

 Name: ''

 ID: '1'

 Device: [1x1 daq.di.DeviceInfo]

MeasurementType: 'Voltage'

Properties, Methods, Events

4-32

 addFunctionGeneratorChannel

idx =

 1

• “Generate a Standard Waveform Using Waveform Function Generation Channels”

Input Arguments

s — Data acquisition session
session object

Data acquisition session, specified as a session object. Create the session object using
daq.createSession. Use the data acquisition session for acquisition and generation
operations. Create one session per vendor and use that vendor session to perform all data
acquisition operations.

deviceID — Device ID
character vector or string

Device ID as defined by the device vendor, specified as a character vector or string.
Obtain the device ID by calling daq.getDevices. The channel specified for this device is
created for the session object.

channelID — Channel ID
numeric value, character array, or string

Channel ID or the physical location of the channel on the device, added to the session,
specified as a numeric value, character vector, or string. You can add a range of channels
with an array. The index for this channel displayed in the session indicates this channel’s
position in the session. If you add a channel with channel ID 1 as the first channel in a
session, the session index is 1 because of position, not ID.

waveformType — Function generator waveform type
character vector or string

Function generator waveform type specified as a character vector or string. Valid
waveform types include:

• 'Sine'

• 'Square'

4-33

4 Functions — Alphabetical List

• 'Triangle'

• 'RampUp'

• 'RampDown'

• 'DC'

• 'Arbitrary'

Data Types: char | string

Output Arguments

ch — Analog input channel object
1-by-n array

Analog input channel that you add, returned as an object containing a 1xn array of
vendor specific channel specific information. Use this channel object to access device and
channel properties.

idx — Channel index
numeric value

Channel index returned as a numeric value. Through the index you can access the array
of the session object's Channels property.

See Also

See Also

Functions
addAnalogInputChannel | daq.createSession | startForeground

Topics
“Generate a Standard Waveform Using Waveform Function Generation Channels”
“Digilent Analog Discovery Devices”
“Digilent Waveform Function Generation Channels”
“Waveform Types”

4-34

 addFunctionGeneratorChannel

Introduced in R2014b

4-35

4 Functions — Alphabetical List

addlistener
Create event listener

Syntax

lh = addlistener(s,eventName,@callback)

lh = addlistener(s,eventName,@(src,event) expr)

Description

lh = addlistener(s,eventName,@callback) creates a listener for the specified
event, eventName, to execute the callback function, callback at the time of the event.
lh is the variable in which the listener handle is stored. Create a callback function
that executes when the listener detects the specified event. The callback can be any
MATLAB® function.

Tip Delete the listener once the operation is complete.

delete(lh)

lh = addlistener(s,eventName,@(src,event) expr) creates a listener for the
specified event, eventName, and fires an anonymous callback function. The anonymous
function uses the specified input arguments and executes the operation specified in
the expression expr. Anonymous functions provide a quick means of creating simple
functions without storing them in a file. For more information, see Anonymous Functions
(MATLAB).

Examples

Add a Listener to an Acquisition Session

Creating a session and add an analog input channel.

s = daq.createSession('ni');

4-36

 addlistener

addAnalogInputChannel(s,'cDAQ1Mod1','ai0','Voltage');

Add a listener for the DataAvailable event.

lh = addlistener(s,'DataAvailable',@plotData);

Create the plotData callback function and save it as plotData.m.

function plotData(src,event)

 plot(event.TimeStamps,event.Data)

end

Acquire data in the background.

startBackground(s);

Wait for the operation to complete and delete the listener.

delete (lh)

Add a Listener to a Signal Generation Session Using an Anonymous Function

Create a session and set the IsContinuous property to true.

s = daq.createSession('ni');

s.IsContinuous = true;

Add two analog output channels and create output data for the two channels.

addAnalogOutputChannel(s,'cDAQ1Mod2',0:1,'Voltage');

outputData0 = linspace(-1,1,1000)';

outputData1 = linspace(-2,2,1000)';

Queue the output data.

queueOutputData(s,[outputData0 outputData1]);

Add a listener to call an anonymous function.

lh = addlistener(s,'DataRequired', @(src,event)...

 src.queueOutputData([outputData0 outputData1]));

Generate signals in the background.

startBackground(s);

4-37

4 Functions — Alphabetical List

Perform other MATLAB operations, and then stop the session.

stop(s)

Delete the listener.

delete(lh)

• “Session Creation Workflow”

Input Arguments

s — Data acquisition session
session object

Data acquisition session, specified as a session object. Create the session object using
daq.createSession. Use the data acquisition session for acquisition and generation
operations. Create one session per vendor and use that vendor session to perform all data
acquisition operations.

eventName — Event name
'DataAvailable' | 'DataRequired' | 'ErrorOccurred'

Name of the event to listen for, specified as a character vector or string. Supported events
include:

• 'DataAvailable'

• 'DataRequired'

• 'ErrorOccurred'

Data Types: char | string

callback — Callback function
function handle

The callback function to execute, specified as a function handle. The function executes
when the specified event occurs.

src — Session input argument
variable name

4-38

 addlistener

Session input argument to the anonymous function, specified as a variable name.
addlistener sends the data acquisition session object handle into the anonymous
function as this variable.

event — Event input argument
variable name

Event input argument to the anonymous function, specified as a variable name.
addlistener sends the triggering event object handle into the anonymous function as
this variable.

expr — Body of anonymous function
executable text

Body of anonymous function, specified as a line of executable text. The expression can
include the input argument variables names src and event.

Output Arguments

lh — Listener event
event object handle

The event listener returned as an event object handle. Delete the listener once the
operation completes.

See Also

See Also

Functions
addAnalogInputChannel | addAnalogOutputChannel | daq.createSession |
startBackground

Properties
DataAvailable Event | DataRequired Event | ErrorOccurred Event

Topics
“Session Creation Workflow”

4-39

4 Functions — Alphabetical List

Introduced in R2010b

4-40

 addTriggerConnection

addTriggerConnection
Add trigger connection

Syntax

addTriggerConnection(s,source,destination,type)

tc = addTriggerConnection(s,source,destination,type)

[tc,idx] = addTriggerConnection(s,source,destination,type)

Description

addTriggerConnection(s,source,destination,type) establishes a trigger
connection from the specified source device and terminal to the specified destination
device and terminal, of the specified connection type.

tc = addTriggerConnection(s,source,destination,type) establishes a trigger
connection from the specified source and terminal to the specified destination device and
terminal, of the specified connection type and displays it in the variable tc.

[tc,idx] = addTriggerConnection(s,source,destination,type) establishes
a trigger connection from the specified source device and terminal to the specified
destination device and terminal of the specified connection type and displays the
connection in the variable tc and the connection index, idx.

Note: You cannot use triggers with audio devices.

Tip: Before adding trigger connections, create a session using daq.createSession, and
add channels to the session.

Input Arguments

s — Data acquisition session
session object

4-41

4 Functions — Alphabetical List

Data acquisition session, specified as a session object. Create the session object using
daq.createSession. Use the data acquisition session for acquisition and generation
operations. Create one session per vendor and use that vendor session to perform all data
acquisition operations.

source — Source of trigger connection
character vector or string

Source for the trigger connection, specified as a character vector or string. Valid values
are:

• 'external' — for a trigger based on an external event.
• 'deviceID/terminal' — for a trigger sourced on a specific terminal on a device

in your session. For example, 'Dev1/PFI1', for more information on device ID see
Device. For more information on terminal see Terminals.

• 'chassisId/terminal' — for a trigger sourced on a specific terminal on a chassis
in your session, for example, 'cDAQ1/PFI1'. For more information on terminal see
Terminals.

You can have only one trigger source in a session.

destination — Destination of trigger connection
character vector or string

Destination for the trigger connection, specified as a character vector or string. Valid
values are:

• 'external' — for a trigger source connected to an external device.
• 'deviceID/terminal' — for a trigger source connected to another device in your

session, for example, 'Dev1/PFI1'. For more information on device ID see Device.
For more information on terminal see Terminals.

• 'chassisId/terminal' — for a trigger source connected to a chassis in your
session, for example, 'cDAQ1/PFI1'. For more information on terminal see
Terminals.

You can also specify multiple destination devices as an array, for example, {'Dev1/
PFI1','Dev2/PFI1'}.

type — Trigger connection type
character vector or string

4-42

 addTriggerConnection

The trigger connection type, specified as a character vector or string. 'StartTrigger'
is the only connection type available for trigger connections at this time.

Output Arguments

tc — Trigger connection
1-by-n object array

The trigger connection that you add, returned as an object of trigger connection
information.

idx — Channel index
numeric

Channel index returned as a numeric value. Through the index you can access the array
of the session object Channels property.

Properties

Examples

Add External Start Trigger Connection

Create a session and add an analog input channel from Dev1 to the session.

s = daq.createSession('ni')

addAnalogInputChannel(s,'Dev1','ai0','Voltage');

Add a trigger connection from an external device to terminal PFI1 on Dev1 using the
'StartTrigger' connection type.

addTriggerConnection(s,'external','Dev1/PFI1','StartTrigger')

Export Trigger to External Device

To Add trigger connection going to an external destination, create a session and add an
analog input channel from Dev1 to the session.

s = daq.createSession('ni')

4-43

4 Functions — Alphabetical List

addAnalogInputChannel(s,'Dev1','ai0','Voltage');

Add a trigger from terminal PFI1 on Dev1 to an external device using the
'StartTrigger' connection type.

addTriggerConnection(s,'Dev1/PFI1','external','StartTrigger')

Save Trigger Connection

Add a trigger connection from terminal PFI1 on Dev1 to terminal PFI0 on Dev2 using
the 'StartTrigger' connection type and store it in tc.

To display a trigger connection in a variable, create a session and add an analog input
channel from Dev1 and Dev2 to the session.

s = daq.createSession('ni')

addAnalogInputChannel(s,'Dev1','ai0','Voltage');

addAnalogInputChannel(s,'Dev2','ai1','Voltage');

Save the trigger connection in tc.

tc = addTriggerConnection(s,'Dev1/PFI1','Dev2/PFI0','StartTrigger');

• “Acquire Voltage Data Using a Digital Trigger”
• “Multiple-Device Synchronization Using USB or PXI Devices”
• “Multiple-Chassis Synchronization with CompactDAQ Devices”

See Also

See Also
addClockConnection | daq.createSession | removeConnection

Topics
“Acquire Voltage Data Using a Digital Trigger”
“Multiple-Device Synchronization Using USB or PXI Devices”
“Multiple-Chassis Synchronization with CompactDAQ Devices”
“Trigger Connections”
“Synchronization”

4-44

 binaryVectorToDecimal

binaryVectorToDecimal
Convert binary vector value to decimal value

Syntax

binaryVectorToDecimal(binaryVector)

binaryVectorToDecimal(binaryVector,bitOrder)

Description

binaryVectorToDecimal(binaryVector) converts a binary vector to a decimal.

binaryVectorToDecimal(binaryVector,bitOrder) converts a binary vector with
the specified bit orientation to a decimal .

Examples

Convert Binary Vector to a Decimal Value

binaryVectorToDecimal([1 1 0])

ans =

 6

Convert a Binary Vector Array to a Decimal Value

binaryVectorToDecimal([1 0 0 0; 0 1 0 0])

ans =

 8

 4

Convert a Binary Vector with LSB First

binaryVectorToDecimal([1 0 0 0; 0 1 0 0],'LSBFirst')

4-45

4 Functions — Alphabetical List

ans =

 1

 2

Convert a Binary Vector Array with LSB First

binaryVectorToDecimal([1 1 0],'LSBFirst')

ans =

 6

• “Generate Signals Using Decimal Data Across Multiple Lines”

Input Arguments

binaryVector — Binary vector to convert to decimal
binary Vectors

Binary vector to convert to a decimal specified as a single binary vector or a row or
column-based array of binary vectors.

bitOrder — Bit order for binary vector representation
'MSBFirst' (default) | 'LSBFirst'

Bit order for the binary vector representation, specified as a character vector or string.
Accepted values are:

• 'MSBFirst' — The first element of the binary vector is the most significant bit.
• 'LSBFirst' — The first element of the binary vector is the least significant bit.

Data Types: char | string

See Also

See Also

Functions
binaryVectorToHex | decimalToBinaryVector | hexToBinaryVector

4-46

 binaryVectorToDecimal

Topics
“Generate Signals Using Decimal Data Across Multiple Lines”

Introduced in R2012b

4-47

4 Functions — Alphabetical List

binaryVectorToHex
Convert binary vector value to hexadecimal

Syntax
hexval = binaryVectorToHex(binaryVector)

hexval = binaryVectorToHex(binaryVector,bitOrder)

Description
hexval = binaryVectorToHex(binaryVector) converts the input binary vector to a
hexadecimal.

hexval = binaryVectorToHex(binaryVector,bitOrder) converts the input
binary vector using the specified bit orientation.

Examples
Convert a Binary Vector to a Hexadecimal

hexval = binaryVectorToHex([0 0 1 1 1 1 0 1])

hexval =

 3D

Convert an Array of Binary Vectors to a Hexadecimal

hexval = binaryVectorToHex([1 1 0 0 0 1 0 0 ; 0 0 0 0 1 0 1 0])

hexval =

 'C4'

 '0A'

The output is appended with 0s to make all hex values the same length character vectors.

Convert a Binary Vector with LSB First

hexval = binaryVectorToHex([0 0 1 1 1 1 0 1],'LSBFirst')

4-48

 binaryVectorToHex

hexval =

 BC

Convert a Binary Vector Array with LSB First

hexval = binaryVectorToHex([1 1 0 0 0 1 0 0 ; 0 0 0 0 1 0 1 0],'LSBFirst')

hexval =

 '23'

 '50'

If necessary, the output is appended with 0s to make all hex values the same length
character vectors.

Note: The binary vector array is converted to a cell array of hexadecimal numbers. If you
input a single binary vector, it is converted to a hexadecimal character vector.

• “Acquire Digital Data in Hexadecimal Values”

Input Arguments

binaryVector — Binary vector to convert to hexadecimal
numeric vector of 1s and 0s

The binary vector to convert to hexadecimal specified as a numeric vector with 0s and 1s.
The vector can be a column or row vector.

bitOrder — Bit order for binary vector representation
'MSBFirst' (default) | 'LSBFirst'

Bit order for the binary vector representation, specified as a character vector or string.
Accepted values are:

• 'MSBFirst' — The first element of the binary vector is the most significant bit.
• 'LSBFirst' — The first element of the binary vector is the least significant bit.

Data Types: char | string

4-49

4 Functions — Alphabetical List

Output Arguments

hexval — Hexadecimal value
character vector

Hexadecimal value returned as a character vector.

See Also

See Also

Functions
binaryVectorToDecimal | decimalToBinaryVector | hexToBinaryVector

Topics
“Acquire Digital Data in Hexadecimal Values”

Introduced in R2012b

4-50

 daq.createSession

daq.createSession
Create data acquisition session for specific vendor hardware

Syntax

session = daq.createSession(vendor)

Description

session = daq.createSession(vendor) creates a session object that you can
configure to perform operations using a CompactDAQ device.

Input Arguments

vendor — Vendor name
character vector or string

Vendor name for the device you want to create a session for, specified as a character
vector. Valid vendors are:

• 'ni'

• 'digilent'

• 'directsound'

Data Types: char | string

Output Arguments

session — Data acquisition session
session object

Data acquisition session, returned as a session object. Use the data acquisition session
for acquisition and generation operations. Create one session per vendor and use that
vendor session to perform all data acquisition operations.

4-51

4 Functions — Alphabetical List

Properties

Session acquisition and generation properties:

Examples

Create a data acquisition session object s, for National Instruments® devices.
s = daq.createSession('ni')

s =

Data acquisition session using National Instruments hardware:

 Will run for 1 second (1000 scans) at 1000 scans/second.

 No channels have been added.

See Also

See Also

Functions
addAnalogInputChannel | addAnalogOutputChannel | addAudioInputChannel
| addAudioOutputChannel | addCounterInputChannel |
addCounterOutputChannel | addDigitalChannel | daq.getDevices |
daq.getVendors

Topics
“Hardware Discovery and Session Setup”

4-52

 daq.getDevices

daq.getDevices

Display available data acquisition devices

Syntax

daq.getDevices

device = daq.getDevices

Description

daq.getDevices lists devices available to your system.

device = daq.getDevices stores this list in the variable device.

Tips Devices not supported by the toolbox are denoted with an *. For a complete list of
supported CompactDAQ devices, see http://www.mathworks.com/hardware-support/data-
acquistion-software.html.

Examples

Get a List of Devices

Get a list of all devices available to your system and store it in the variable d.

 d = daq.getDevices

d =

index Vendor Device ID Description

----- ----------- --------- ---

1 directsound Audio0 DirectSound Primary Sound Capture Driver

2 directsound Audio1 DirectSound Digital Audio (S/PDIF) (High Definition Audio Device)

3 directsound Audio3 DirectSound HP 4120 (2- HP 4120)

4 ni cDAQ1Mod1 National Instruments NI 9205

4-53

http://www.mathworks.com/hardware-support/data-acquistion-software.html
http://www.mathworks.com/hardware-support/data-acquistion-software.html

4 Functions — Alphabetical List

5 ni cDAQ1Mod2 National Instruments NI 9263

6 ni cDAQ1Mod3 National Instruments NI 9234

7 ni cDAQ2Mod1 National Instruments NI 9402

8 ni cDAQ2Mod2 National Instruments NI 9205

9 ni cDAQ2Mod3 National Instruments NI 9375

10 ni Dev1 National Instruments USB-6211

11 ni Dev2 National Instruments USB-6218

12 ni Dev3 National Instruments PCI-6255

13 ni PXI1Slot2 National Instruments PXI-4461

14 ni PXI1Slot3 National Instruments PXI-4461

To get detailed information about a module on the chassis, type d(index). For example,
to get information about NI 9265, which has the index 13, type:
 d(13)

ans =

ni: National Instruments NI 9402 (Device ID: 'cDAQ1Mod5')

 Counter input subsystem supports:

 Rates from 0.1 to 80000000.0 scans/sec

 4 channels ('ctr0','ctr1','ctr2','ctr3')

 'EdgeCount','PulseWidth','Frequency','Position' measurement types

 Counter output subsystem supports:

 Rates from 0.1 to 80000000.0 scans/sec

 4 channels ('ctr0','ctr1','ctr2','ctr3')

 'PulseGeneration' measurement type

This module is in slot 5 of the 'cDAQ-9178' chassis with the name 'cDAQ1'.

You can also click on the name of the device in the list to access detailed device
information, which includes:

• subsystem type
• rate
• number of available channels
• measurement type

Output Arguments

device — Device list
array of DeviceInfo objects

Device list, returned as an array of DeviceInfo objects.

4-54

 daq.getDevices

See Also

See Also

Functions
daq.createSession | daq.getVendors

Topics
“Hardware Discovery and Session Setup”

Introduced in R2010b

4-55

4 Functions — Alphabetical List

daq.getVendors
Display available vendors

Syntax

daq.getVendors

vendor = daq.getVendors

Description

daq.getVendors lists vendors available to your machine and MATLAB.

vendor = daq.getVendors stores this list in the variable vendor.

Output Arguments

vendor — Vendor list
array of VendorInfo objects

Vendor list, returned as an array of VendorInfo objects. This represents the vendor
information available to your system.

Data Acquisition Toolbox currently supports

• National Instruments, including CompactDAQ devices, denoted with the abbreviation
'ni'.

• Digilent Analog Discovery™ devices denoted with 'digilent'. To use this device use
the Support Package Installer to download necessary drivers. For more information
see “Digilent Waveform Function Generation Channels”.

• DirectSound Windows sound cards. To use devices with DirectSound sound cards use
the Support Package Installer to download necessary drivers. For more information
see “Multichannel Audio Input and Output”.

Examples

4-56

 daq.getVendors

Get a list of vendors

Get a list of all vendors available to your machine and MATLAB and store it in the
variable v.

v = daq.getVendors

v =

Number of vendors: 3

index ID Operational Comment

----- ----------- ----------- --------------------

1 digilent true Digilent Inc.

2 ni true National Instruments

3 directsound true DirectSound

Properties, Methods, Events

Additional data acquisition vendors may be available as downloadable support packages.

Open the Support Package Installer to install additional vendors.

See Also

See Also

Functions
daq.createSession | daq.getDevices

Topics
“Hardware Discovery and Session Setup”

4-57

4 Functions — Alphabetical List

daqhelp
Help for toolbox interface

Syntax

daqhelp

daqhelp('functionname')

out = daqhelp('functionname')

Description

daqhelp displays a comprehensive listing of Data Acquisition Toolbox functions and
properties along with a brief description of each. Links in the output provide access to
more detailed help.

daqhelp('functionname') returns help for the function specified as a character
vector or string.

out = daqhelp('functionname') assigns the help text output to the variable out.

4-58

 daqreset

daqreset
Reset Data Acquisition Toolbox

Syntax

daqreset

Description

daqreset resets Data Acquisition Toolbox and deletes all data acquisition session and
device objects.

See Also

See Also

Functions
daq.createSession

4-59

4 Functions — Alphabetical List

decimalToBinaryVector
Convert decimal value to binary vector

Syntax

decimalToBinaryVector(decimalNumber)

decimalToBinaryVector(decimalNumber,numberOfBits)

decimalToBinaryVector(decimalNumber,numberOfBits,bitOrder)

decimalToBinaryVector(decimalNumber,[],bitOrder)

Description

decimalToBinaryVector(decimalNumber) converts a positive decimal number to a
binary vector, represented using the minimum number of bits.

decimalToBinaryVector(decimalNumber,numberOfBits) converts a decimal
number to a binary vector with the specified number of bits.

decimalToBinaryVector(decimalNumber,numberOfBits,bitOrder) converts a
decimal number to a binary vector with the specified number of bits in the specified bit
ordering.

decimalToBinaryVector(decimalNumber,[],bitOrder) converts a decimal
number to a binary vector with default number of bits in the specified bit ordering.

Examples

Convert a Decimal to a Binary Vector

decimalToBinaryVector(6)

ans =

 1 1 0

Convert an Array of Decimals to a Binary Vector Array

decimalToBinaryVector(0:4)

4-60

 decimalToBinaryVector

ans =

 0 0 0

 0 0 1

 0 1 0

 0 1 1

 1 0 0

Convert a Decimal into a Binary Vector of Specific Bits

decimalToBinaryVector(6, 8, 'MSBFirst')

ans =

 0 0 0 0 0 1 1 0

Convert a Decimal into a Binary Vector with LSB First

decimalToBinaryVector(6, [], 'LSBFirst')

ans =

 0 1 1

Convert an Array of Decimals into a Binary Vector Array with LSB First

decimalToBinaryVector(0:4, 4, 'LSBFirst')

ans =

 0 0 0 0

 1 0 0 0

 0 1 0 0

 1 1 0 0

 0 0 1 0

• “Generate Signals Using Decimal Data Across Multiple Lines”

Input Arguments

decimalNumber — Number to convert to binary vector
numeric

The number to convert to a binary vector specified as a positive integer scalar.

4-61

4 Functions — Alphabetical List

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

numberOfBits — Number of bits required to correctly represent the decimal number
numeric

The number of bits required to correctly represent the decimal. This is an optional
argument. If you do not specify the number of bits, the number is represented using
the minimum number of bits needed. By default minimum number of bits needed to
represent the value is specified, unless you specify a value

bitOrder — Bit order for binary vector representation
'MSBFirst' (default) | 'LSBFirst'

Bit order for the binary vector representation, specified as a character vector or string.
Accepted values are:

• 'MSBFirst' — The first element of the binary vector is the most significant bit.
• 'LSBFirst' — The first element of the binary vector is the least significant bit.

Data Types: char | string

See Also

See Also

Functions
binaryVectorToDecimal | binaryVectorToHex | hexToBinaryVector

Topics
“Generate Signals Using Decimal Data Across Multiple Lines”

Introduced in R2012b

4-62

 hexToBinaryVector

hexToBinaryVector
Convert hexadecimal value to binary vector

Syntax

hexToBinaryVector(hexNumber)

hexToBinaryVector(hexNumber,numberOfBits)

hexToBinaryVector(hexNumber,numberOfBits,bitOrder)

Description

hexToBinaryVector(hexNumber) converts hexadecimal numbers to a binary vector.

hexToBinaryVector(hexNumber,numberOfBits) converts hexadecimal numbers to a
binary vector with the specified number of bits.

hexToBinaryVector(hexNumber,numberOfBits,bitOrder) converts hexadecimal
numbers to a binary vector with the specified number of bits in the specified bit ordering.

Examples

Convert a hexadecimal to a binary vector

hexToBinaryVector('A1')

ans=

 1 0 1 0 0 0 0 1

Convert a hexadecimal with a leading 0 to a binary Vector

hexToBinaryVector('0xA')

ans=

4-63

4 Functions — Alphabetical List

 1 0 1 0

Convert an array hexadecimal numbers to a binary vector

hexToBinaryVector(['A1'; 'B1'])

ans=

 1 0 1 0 0 0 0 1

 1 0 1 1 0 0 0 1

Convert a hexadecimal number into a binary vector of specific bits

hexToBinaryVector('A1',12, 'MSBFirst')

ans=

 0 0 0 0 1 0 1 0 0 0 0 1

Convert a cell array of hexadecimal numbers into a binary vector of specific bits

hexToBinaryVector({'A1';'B1'},8)

ans=

 1 0 1 0 0 0 0 1

 1 0 1 1 0 0 0 1

Convert a hexadecimal into a binary vector with LSB first

hexToBinaryVector('A1', [], 'LSBFirst')

ans=

 1 0 0 0 0 1 0 1

• “Acquire Digital Data in Hexadecimal Values”

Input Arguments

hexNumber — Hexadecimal to convert to binary vector
hexadecimal value

4-64

 hexToBinaryVector

Hexadecimal number to convert to a binary vector, specified as a character vector or
string.
Data Types: char | string

numberOfBits — Number of bits to represent the decimal number
numeric

Number of bits to represent the decimal number, specified as a numeric value. This is an
optional argument. If you do not specify the number of bits, the number is represented
using the minimum number of bits needed.

bitOrder — Bit order for binary vector representation
'MSBFirst' (default) | 'LSBFirst'

Bit order for the binary vector representation, specified as a character vector or string.
Accepted values are:

• 'MSBFirst' — The first element of the binary vector is the most significant bit.
• 'LSBFirst' — The first element of the binary vector is the least significant bit.

Data Types: char | string

See Also

See Also

Functions
binaryVectorToDecimal | binaryVectorToHex | decimalToBinaryVector

Topics
“Acquire Digital Data in Hexadecimal Values”

Introduced in R2012b

4-65

4 Functions — Alphabetical List

inputSingleScan
Acquire single scan from all input channels

Syntax

data = inputSingleScan(s);

[data,triggerTime] = inputSingleScan(s);

Description

data = inputSingleScan(s); returns an immediately acquired single scan from each
input channel in the session as a 1-by-n array of doubles. The value is stored in data,
where n is the number of input channels in the session.

Tip: To acquire more than a single scan, use startForeground.

[data,triggerTime] = inputSingleScan(s); returns an immediately acquired
single scan from each input channel in the session as a 1-by-n array of doubles. The
value is stored in data, where n is the number of input channels in the session and the
MATLAB serial date timestamp representing the time the data is acquired is returned in
triggerTime.

Examples

Acquire Single Analog Input Scan

Acquire a single input from an analog channel.

Create a session and add two analog input channels:

s = daq.createSession('ni');

addAnalogInputChannel(s,'cDAQ1Mod1',1:2,'Voltage');

Input a single scan:

4-66

 inputSingleScan

 data = inputSingleScan(s)

data =

 -0.1495 0.8643

Acquire Single Digital Input Scan

Acquire a single input from a digital channel and get data and the trigger time of the
acquisition.

Create a session and add two digital channels with InputOnly measurement type:

s = daq.createSession('ni');

addDigitalChannel(s,'dev1','Port0/Line0:1','InputOnly');

Input a single scan:

 [data,triggerTime] = inputSingleScan(s)

Acquire Single Counter Input Scan

Acquire a single input from a counter channel.

Create a session and add a counter input channel with EdgeCount measurement type:

s = daq.createSession('ni');

addCounterInputChannel(s,'Dev1',0,'EdgeCount');

Input a single edge count:

 data = inputSingleScan(s)

• “Acquire Non-Clocked Digital Data”
• “Acquire Counter Input Data”

Input Arguments

s — Data acquisition session
session object

Data acquisition session, specified as a session object. Create the session object using
daq.createSession. Use the data acquisition session for acquisition and generation

4-67

4 Functions — Alphabetical List

operations. Create one session per vendor and use that vendor session to perform all data
acquisition operations.

Output Arguments

data — Value from acquired data
array of double

Value from acquired data, returned as a 1-by-n array of doubles.

triggerTime — Timestamp of acquired data
numeric

Timestamp of acquired data which is a MATLAB serial date timestamp representing the
absolute time when timeStamps = 0.

See Also

See Also

Functions
addAnalogInputChannel | addCounterInputChannel | addDigitalChannel |
daq.createSession | startForeground

Topics
“Acquire Non-Clocked Digital Data”
“Acquire Counter Input Data”

Introduced in R2010b

4-68

 outputSingleScan

outputSingleScan
Generate single scan on all output channels

Syntax

outputSingleScan(s,data)

Description

outputSingleScan(s,data) outputs a single scan of data on one or more analog
output channels.

Input Arguments

s — Data acquisition session
session object

Data acquisition session, specified as a session object. Create the session object using
daq.createSession. Use the data acquisition session for acquisition and generation
operations. Create one session per vendor and use that vendor session to perform all data
acquisition operations.

data — Data to output
doubles

Data to output, represented as a 1-by-n matrix of doubles, where n is the number of
output channels in the session.

Examples

Analog Output

Output a single scan on two analog output voltage channels

Create a session and add two analog output channels.

4-69

4 Functions — Alphabetical List

s = daq.createSession('ni');

addAnalogOutputChannel(s,'cDAQ1Mod2',0:1,'Voltage');

Create an output value and output a single scan for each channel added.

outputSingleScan(s,[1.5 4]);

Digital Output

Output one value on each of two lines on a digital channel

Create a session and add two digital channels from port 0 that measures output only:

s = daq.createSession('ni');

addDigitalChannel(s,'dev1','Port0/Line0:1','OutputOnly')

Output one value each on the two lines:

outputSingleScan(s,[0 1])

See Also

See Also

Functions
addAnalogOutputChannel | addDigitalChannel | daq.createSession |
inputSingleScan

Introduced in R2010b

4-70

 prepare

prepare
Prepare session for operation

Syntax

prepare(s)

Description

prepare(s) configures and allocates hardware resources for the session s and reduces
the latency of startBackground and startForeground functions. This function is
optional and is automatically called as needed.

Inputs

s — Data acquisition session
session object

Data acquisition session, specified as a session object. Create the session object using
daq.createSession. Use the data acquisition session for acquisition and generation
operations. Create one session per vendor and use that vendor session to perform all data
acquisition operations.

See Also

See Also

Functions
addAnalogInputChannel | addAnalogOutputChannel | release

4-71

4 Functions — Alphabetical List

queueOutputData
Queue data to be output

Syntax

queueOutputData(s,data)

Description

queueOutputData(s,data) queues data to be output. When using analog output
channels, you must queue data before you call startForeground or startBackground.

Examples

Queue Output Data for a Single Channel

Create a session, add an analog output channel, and queue some data to output.

s = daq.createSession('ni');

addAnalogOutputChannel(s,'cDAQ1Mod2', 'ao0', 'Voltage');

queueOutputData(s,linspace(-1, 1, 1000)');

startForeground(s)

Queue Output Data for Multiple Channels

s = daq.createSession('ni');

addAnalogOutputChannel(s,'cDAQ1Mod2',0:1,'Voltage');

data0 = linspace(-1,1,1000)';

data1 = linspace(-2,2,1000)';

queueOutputData(s,[data0 data1]);

startBackground(s);

Input Arguments

s — Data acquisition session
session object handle

4-72

 queueOutputData

Data acquisition session, specified as a session object handle. Create the session object
using daq.createSession. Use the data acquisition session for acquisition and
generation operations. Create one session per vendor and use that vendor session to
perform all data acquisition operations.

data — Output data values
array of doubles

Output data values, specified as an m-by-n matrix of doubles, where m is the number of
scans to generate, and n is the number of output channels in the session.

See Also

See Also

Functions
addAnalogOutputChannel | daq.createSession | startBackground |
startForeground

Introduced in R2010b

4-73

4 Functions — Alphabetical List

release

Release session resources

Syntax

release(s)

Description

release(s) releases all reserved hardware resources.

When you associate hardware with a session using the Data Acquisition Toolbox, the
session reserves exclusive access to the data acquisition hardware.

Hardware resources associated with a session are automatically released when you
delete the session object, or you assign a different value to the variable containing
your session object. Optionally, you can use s.release to release reserved hardware
resources if you need to use it in another session or to use applications other than
MATLAB to access the hardware.

Inputs

s — Data acquisition session
session object

Data acquisition session, specified as a session object. Create the session object using
daq.createSession. Use the data acquisition session for acquisition and generation
operations. Create one session per vendor and use that vendor session to perform all data
acquisition operations.

Examples

4-74

 release

Release session hardware

Create a session and add an analog input voltage channel and acquire data in the
foreground:

s1 = daq.createSession('ni');

addAnalogInputChannel(s1,'cDAQ3Mod1','ai0','Voltage');

startForeground(s1)

Release the session hardware and create another session object with an analog input
voltage channel on the same device as the previous session. Acquire in the foreground:

release(s1);

s2 = daq.createSession('ni');

addAnalogInputChannel(s2,'cDAQ3Mod1','ai2','Voltage');

startForeground(s2);

See Also

See Also

Functions
prepare | startBackground | startForeground

4-75

4 Functions — Alphabetical List

removeChannel
Remove channel from session object

Syntax

removeChannel(s,idx);

Description

removeChannel(s,idx); removes the channel specified by idx from the session object
s.

Examples

Remove Channels from a Session

Start with a session s, to which you add two analog input and two analog output voltage
channels and display the channel information.

s

s =

Data acquisition session using National Instruments hardware:

 No data queued. Will run at 1000 scans/second.

 Operation starts immediately.

 Number of channels: 4

 index Type Device Channel MeasurementType Range Name

 ----- ---- --------- ------- ------------------- ---------------- ----

 1 ai cDAQ1Mod4 ai0 Voltage (SingleEnd) -10 to +10 Volts

 2 ai cDAQ1Mod4 ai1 Voltage (SingleEnd) -10 to +10 Volts

 3 ao cDAQ1Mod2 ao0 Voltage (Diff) -10 to +10 Volts

 4 ao cDAQ1Mod2 ao1 Voltage (Diff) -10 to +10 Volts

Remove channel 'ai0' with the index 1 from the session:

removeChannel(s,1)

4-76

 removeChannel

To see how the indexes shift after you remove a channel, type:

s

s =

Data acquisition session using National Instruments hardware:

 No data queued. Will run at 1000 scans/second.

 All devices synchronized using cDAQ1 CompactDAQ chassis backplane. (Details)

 Number of channels: 3

 index Type Device Channel MeasurementType Range Name

 ----- ---- --------- ------- ------------------- ---------------- ----

 1 ai cDAQ1Mod4 ai1 Voltage (SingleEnd) -10 to +10 Volts

 2 ao cDAQ1Mod2 ao0 Voltage (Diff) -10 to +10 Volts

 3 ao cDAQ1Mod2 ao1 Voltage (Diff) -10 to +10 Volts

Remove the first output channel 'ao0' at index 2:

removeChannel(s,2);

The session now displays one input and one output channel:

s.Channels

ans =

Number of channels: 2

 index Type Device Channel MeasurementType Range Name

 ----- ---- --------- ------- ------------------- ---------------- ----

 1 ai cDAQ1Mod4 ai1 Voltage (SingleEnd) -10 to +10 Volts

 2 ao cDAQ1Mod2 ao1 Voltage (Diff) -10 to +10 Volts

Input Arguments

s — Data acquisition session
session object

Data acquisition session, specified as a session object. Create the session object using
daq.createSession. Use the data acquisition session for acquisition and generation
operations. Create one session per vendor and use that vendor session to perform all data
acquisition operations.

idx — Index of channel
numeric

4-77

4 Functions — Alphabetical List

Channel index, specified as a numeric value. Use the index of the channel that you wan
to remove from the session.

See Also

See Also

Functions
addAnalogInputChannel | addAnalogOutputChannel | addAudioInputChannel
| addAudioOutputChannel | addCounterInputChannel |
addCounterOutputChannel | addDigitalChannel

Introduced in R2010b

4-78

 removeConnection

removeConnection
Remove clock or trigger connection

Syntax

removeConnection(s,idx);

Description

removeConnection(s,idx); remove the specified clock or trigger with the index, idx,
from the ion. The connected device remains in the session, but no longer synchronize
with other connected devices in the session.

Input Arguments

s — Data acquisition session
session object

Data acquisition session, specified as a session object. Create the session object using
daq.createSession. Use the data acquisition session for acquisition and generation
operations. Create one session per vendor and use that vendor session to perform all data
acquisition operations.

idx — Index of connection
numeric value

Index of the connection you want to remove, specified as a numeric value.

Examples

Remove a Clock and Trigger Connection

Create clock and trigger connection in the session s.

s = daq.createSeion('ni');

4-79

4 Functions — Alphabetical List

addAnalogInputChannel(s,'Dev1','ai0','Voltage')

addAnalogInputChannel(s,'Dev2','ai0','Voltage')

addAnalogInputChannel('Dev3','ai0','Voltage')

addTriggerConnection(s,'Dev1/PFI0',{'Dev2/PFI0','Dev3/PFI0'}','StartTrigger');

addClockConnection(s,'Dev1/PFI1',{'Dev2/PFI1','Dev3/PFI1'},'ScanClock');

View existing synchronization connection .

s.Connections

ans=

Start Trigger is provided by 'Dev1' at 'PFI0' and will be received by:

 'Dev2' at terminal 'PFI0'

 'Dev3' at terminal 'PFI0'

Scan Clock is provided by 'Dev1' at 'PFI1' and will be received by:

 'Dev2' at terminal 'PFI1'

 'Dev3' at terminal 'PFI1'

 index Type Source Deination

 ----- ------------ --------- -----------

 1 StartTrigger Dev1/PFI0 Dev2/PFI0

 2 StartTrigger Dev1/PFI0 Dev3/PFI0

 3 ScanClock Dev1/PFI1 Dev2/PFI1

 4 ScanClock Dev1/PFI1 Dev3/PFI1

Remove the trigger connection with the index 2 from Dev3/PFI0 to Dev1/PFI0:

removeConnection(s,2);

View updated connection

s.Connections

an=

Start Trigger is provided by 'Dev1' at 'PFI0' and will be received by 'Dev2' at terminal 'PFI0'.

Scan Clock is provided by 'Dev1' at 'PFI1' and will be received by:

 'Dev2' at terminal 'PFI1'

 'Dev3' at terminal 'PFI1'

 index Type Source Deination

 ----- ------------ --------- -----------

 1 StartTrigger Dev1/PFI0 Dev2/PFI0

4-80

 removeConnection

 2 ScanClock Dev1/PFI1 Dev2/PFI1

 3 ScanClock Dev1/PFI1 Dev3/PFI1

See Also

See Also

Functions
addClockConnection | addTriggerConnection | daq.createSession

Topics
“Trigger Connections”
“Clock Connections”
“Synchronization”

4-81

4 Functions — Alphabetical List

resetCounters
Reset counter channel to initial count

Syntax
resetCounters(s)

Description
resetCounters(s) restarts the current value of counter channels configured in the
session object, s to the specified InitialCount property on each channel.

Tips

• Reset counters only if you are performing on-demand operations using
inputSingleScan or outputSingleScan

• Create an acquisition session and add a channel before you use this method. See
daq.createSession for more information.

Input Arguments
s — Data acquisition session
session object

Data acquisition session, specified as a session object. Create the session object using
daq.createSession. Use the data acquisition session for acquisition and generation
operations. Create one session per vendor and use that vendor session to perform all data
acquisition operations.

Examples
Reset Counters

Create a session with a counter channel with an 'EdgeCount' measurement type:

4-82

 resetCounters

s = daq.createSession ('ni');

addCounterInputChannel(s,'cDAQ1Mod5',0,'EdgeCount');

Acquire data.

inputSingleScan(s)

ans =

 756

Reset the counter to the default value, 0, and acquire again.

resetCounters(s)

inputSingleScan(s)

ans =

 303

• “Acquire Counter Input Data”
• “Generate Pulse Data on a Counter Channel”

See Also

See Also

Functions
addCounterInputChannel | daq.createSession | inputSingleScan

Topics
“Acquire Counter Input Data”
“Generate Pulse Data on a Counter Channel”

4-83

4 Functions — Alphabetical List

startBackground
Start background operations

Syntax

startBackground(s);

Description

startBackground(s); starts the operation of the session object, s, without
blocking MATLAB command line and other code. To block MATLAB execution, use
startForeground.

When you use startBackground(s) with analog input channels, the operation uses the
DataAvailable event to deliver the acquired data. This event is fired periodically while
an acquisition is in progress. For more information, see “Event and Listener Concepts”
(MATLAB).

When you add analog output channels to the session, you must call
queueOutputData() before calling startBackground().

During a continuous generation, the DataRequired event is fired periodically to request
additional data to be queued to the session. See DataRequired for more information.

By default, the IsContinuous property is set to false and the operation stops
automatically. If you have set it to true, use stop to stop background operations
explicitly.

Use wait to block MATLAB execution until a background operation is complete.

Tips

• Create an acquisition session and add a channel before you use this method. See
daq.createSession for more information.

• If your session has analog input channels, you must use a DataAvailable event to
receive the acquired data in a background acquisition.

4-84

 startBackground

• If your session has analog output channels and is continuous, you can use a
DataRequired event to queue additional data during background generations.

• Call prepare to reduce the latency associated with startup and to preallocate
resources.

• Use an ErrorOccurred event to display errors during an operation.

Examples

Acquire Data in the Background

Create a session and add a listener. Use the listener callback function to access the
acquired data.

s = daq.createSession('ni');

addAnalogInputChannel(s,'cDAQ1Mod1','ai0','Voltage');

lh = addlistener(s,'DataAvailable',@plotData);

function plotData(src,event)

 plot(event.TimeStamps,event.Data)

end

Start the session and perform other MATLAB operations.

startBackground(s);

Perform other MATLAB operations.

Generate Data Continuously

For a continuous background generation, add a listener event to queue additional data to
be output.

s = daq.createSession('ni');

addAnalogOutputChannel(s,'cDAQ1Mod2',0,'Voltage');

s.IsContinuous = true;

s.Rate=10000;

data=linspace(-1,1,5000)';

lh = addlistener(s,'DataRequired', ...

 @(src,event) src.queueOutputData(data));

queueOutputData(s,data)

startBackground(s);

4-85

4 Functions — Alphabetical List

Perform other MATLAB operations during the generation.

• “Acquire Data in the Background”
• “Generate Signals in the Background”
• “Generate Signals in the Background Continuously”

Input Arguments

s — Data acquisition session
session object

Data acquisition session, specified as a session object. Create the session object using
daq.createSession. Use the data acquisition session for acquisition and generation
operations. Create one session per vendor and use that vendor session to perform all data
acquisition operations.

See Also

See Also
addAnalogInputChannel | addAnalogOutputChannel | addAudioInputChannel
| addDigitalChannel | addlistener | daq.createSession | DataAvailable |
DataRequired | ErrorOccurred | queueOutputData | startForeground

Topics
“Acquire Data in the Background”
“Generate Signals in the Background”
“Generate Signals in the Background Continuously”

Introduced in R2010b

4-86

 startForeground

startForeground
Start foreground operations

Syntax

startForeground(s);

data = startForeground(s);

[data,timeStamps,triggerTime] = startForeground(s);

Description

startForeground(s); starts operations of the session object, s, and blocks MATLAB
command line and other code until the session operation is complete.

data = startForeground(s); returns the data acquired in the output parameter,
data.

[data,timeStamps,triggerTime] = startForeground(s); returns the data
acquired, timestamps relative to the time the operation is triggered, and a trigger time
indicating the absolute time the operation was triggered.

Examples

Acquire Analog Data

Acquire data by creating a session with an analog input channel.

s = daq.createSession('ni');

addAnalogInputChannel(s,'cDAQ1Mod1','ai0','Voltage');

Start the acquisition and save the acquired data into the variable data:

 data = startForeground(s);

Generate Analog Data

Generate a signal by creating a session with an analog output channel.

4-87

4 Functions — Alphabetical List

s = daq.createSession('ni');

addAnalogOutputChannel(s,'cDAQ1Mod2','ao0','Voltage');

Create and queue an output signal and start the generation:

outputSignal = linspace(-1,1,1000)';

queueOutputData(s,outputSignal);

startForeground(s);

Acquire Analog Input Data and Timestamps

s = daq.createSession('ni');

addAnalogInputChannel(s,'cDAQ1Mod1','ai0','Voltage');

Start the acquisition and save the acquired data in the variable data, the acquisition
timestamp in timestamps, and the trigger time in triggerTime:

 [data,timestamps,triggerTime] = startForeground(s);

• “Acquire Data in the Foreground”
• “Generate Pulse Data on a Counter Channel”

Input Arguments

s — Data acquisition session
session object

Data acquisition session, specified as a session object. Create the session object using
daq.createSession. Use the data acquisition session for acquisition and generation
operations. Create one session per vendor and use that vendor session to perform all data
acquisition operations.

Output Arguments

data — Values of acquired data
array of doubles

Values of acquired data, returned as an m-by-n array of doubles, where m is the number of
scans acquired, and n is the number of input channels in the session.

4-88

 startForeground

timeStamps — Recorded timestamp
numeric

Recorded timestamp relative to the time the operation is triggered, returned as an m-by-1
array, where m is the number of scans.

triggerTime — Timestamp of acquired data
numeric

Timestamp of acquired data which is a MATLAB serial date timestamp representing the
absolute time when timeStamps = 0.

See Also

See Also
addAnalogInputChannel | addAnalogOutputChannel | addDigitalChannel |
daq.createSession | startBackground

Topics
“Acquire Data in the Foreground”
“Generate Pulse Data on a Counter Channel”
“Hardware Discovery and Session Setup”

Introduced in R2010b

4-89

4 Functions — Alphabetical List

stop

Stop background operation

Syntax

stop(s);

Description

stop(s); stops the session and all associated hardware operations in progress.
Stopping the session flushes all undelivered data that is below the threshold defined
by the property NotifyWhenDataAvailableExceeds, and will not fire any more
DataAvailable events.

Examples

Stop Background Data Generation

Generate continuous background data until stopped.

Generate output data.

s = daq.createSession('ni');

addAnalogOutputChannel(s,'cDAQ1Mod2',0,'Voltage');

s.IsContinuous = true;

s.Rate=10000;

data=linspace(-1,1,5000)';

queueOutputData(s,data)

startBackground(s);

Perform other MATLAB operations during the generation, then stop the session.

4-90

 stop

stop(s);

Input Arguments

s — Data acquisition session
session object

Data acquisition session, specified as a session object. Create the session object using
daq.createSession. Use the data acquisition session for acquisition and generation
operations. Create one session per vendor and use that vendor session to perform all data
acquisition operations.

See Also

See Also

Functions
startBackground | startForeground | wait

Introduced in R2010b

4-91

4 Functions — Alphabetical List

wait
Block MATLAB until background operation completes

Syntax

wait(s)

wait(s,timeout)

Description

wait(s) blocks MATLAB until the background operation completes. To abort the wait,
press Ctrl+C.

wait(s,timeout) blocks MATLAB until the operation completes or the specified
timeout occurs.

Tips You cannot call wait if you have set the session IsContinuous property to true.
To terminate the operation in this case, use the stop function.

Input Arguments

s — Data acquisition session
session object

Data acquisition session, specified as a session object. Create the session object using
daq.createSession. Use the data acquisition session for acquisition and generation
operations. Create one session per vendor and use that vendor session to perform all data
acquisition operations.

timeout — Session timeout value
numeric

Session timeout value, specified as a number. This value is the maximum time in seconds
before the wait throws an error.

4-92

 wait

Examples

Wait to Acquire Data

Create a session and add an analog output channel.

s = daq.createSession('ni');

addAnalogOutputChannel(s,'cDAQ1Mod2','ao0','Voltage');

Queue some output data.

queueOutputData(s,zeros(10000,1));

Start the session and issue a wait. This blocks MATLAB until all data is output.

startBackground(s);

% Perform other MATLAB operations.

wait(s)

Queue more data and wait for up to 15 seconds.

queueOutputData(s,zeros(10000,1));

startBackground(s);

% Perform other MATLAB operations.

wait(s,15)

See Also

See Also

Functions
startBackground | stop

4-93

4 Functions — Alphabetical List

DataAvailable
Notify when acquired data is available to process

Syntax

lh = addlistener(session,'DataAvailable',callback);

lh = addlistener(session,'DataAvailable',@(src,event) expr)

Description

lh = addlistener(session,'DataAvailable',callback); creates a listener for
the DataAvailable event. When data is available to process, the callback is executed.
The callback can be any MATLAB function with the (src, event) signature.

lh = addlistener(session,'DataAvailable',@(src,event) expr) creates
a listener for the DataAvailable event and fires an anonymous callback function.
The anonymous function requires the specified input arguments and executes the
operation specified in the expression expr. Anonymous functions provide a quick means
of creating simple functions without storing your function to a file. For more information
see Anonymous Functions (MATLAB).

The callback has two required parameters: src and event. src is the session object
for the listener and event is a daq.DataAvailableInfo object containing the data
associated and timing information. Properties of daq.DataAvailableInfo are:

Data
An mxn matrix of doubles where m is the number of scans acquired, and n is the
number of input channels in the session.

TimeStamps
The timestamps relative to TriggerTime in an mx1 array where m is the number of
scans acquired.

TriggerTime
A MATLAB serial date time stamp representing the absolute time the acquisition
trigger occurs.

4-94

 DataAvailable

Tip: Frequency with which the DataAvailable event is fired, is controlled by
NotifyWhenDataAvailableExceeds

Examples

Create DataAvailable Function

This example shows how to create an event that plots data when triggered using a
callback function.

Create a session, add an analog input channel, and change the duration of the
acquisition.

s = daq.createSession('ni');

addAnalogInputChannel(s,'cDAQ1Mod1','ai0','Voltage');

s.DurationInSeconds = 5;

Add a listener for the DataAvailable event to plot the data.

lh = addlistener(s,'DataAvailable',@plotData);

Create a function that plots the data when the event occurs.

 function plotData(src,event)

 plot(event.TimeStamps,event.Data)

end

Start the acquisition and wait.

startBackground(s);

wait(s);

Delete the listener.

delete(lh)

Create Anonymous DataAvailable Function

This example shows how to create an event using an anonymous function call to plot data
when an event occurs.

Create a session, add an analog input channel, and change the duration of the
acquisition.

4-95

4 Functions — Alphabetical List

s = daq.createSession('ni');

addAnalogInputChannel(s,'cDAQ1Mod1', 'ai0', 'Voltage');

s.DurationInSeconds = 5;

Add a listen with an anonymous function call.

lh = s.addlistener('DataAvailable', ...

 @(src,event) plot(event.TimeStamps, event.Data));

Acquire data.

s.startBackground();

Delete the listener.

delete(lh)

• “Acquire Data in the Background”

See Also

See Also

Functions
addlistener | startBackground

Properties
IsNotifyWhenDataAvailableExceedsAuto | NotifyWhenDataAvailableExceeds

Topics
“Acquire Data in the Background”

4-96

 DataRequired Event

DataRequired Event
Notify when additional data is required for output on continuous generation

Syntax

lh = addlistener(session,'DataRequired',callback);

lh = addlistener(session,'DataRequired',@(src,event) expr);

Description

lh = addlistener(session,'DataRequired',callback); creates a listener for
the DataRequired event. When more data is required, the callback is executed. The
callback can be any MATLAB function with the (src,event) signature.

lh = addlistener(session,'DataRequired',@(src,event) expr); creates a
listener for the DataRequired event and fires an anonymous function. The anonymous
function requires the specified input arguments and executes the operation specified in
the expression expr. Anonymous functions provide a quick means of creating simple
functions without storing your function to a file. For more information see Anonymous
Functions (MATLAB).

The callback has two required parameters: src and event. src is the session object for
the listener and event is a daq.DataRequiredInfo object.

Tips

• The callback is typically used to queue more data to the device.

• Frequency is controlled by NotifyWhenScansQueuedBelow.

Examples

Add an anonymous listener to a signal generation session

Create a session and add two analog output channels.

4-97

4 Functions — Alphabetical List

s = daq.createSession('ni');

s.IsContinuous = true

addAnalogOutputChannel(s,'cDAQ1Mod2',0:1,'Voltage');

Create output data for the two channels.

outputData0 = (linspace(-1,1,1000))';

outputData1 = (linspace(-2,2,1000))';

Queue the output data, add an anonymous listener, and generate the signal in the
background.
queueOutputData(s,[outputData0,outputData1]);

lh = addlistener(s,'DataRequired', ...

 @(src,event) src.queueOutputData([outputData0,outputData1]));

Generate the output data and pause for up to 15 seconds.

startBackground(s);

pause(15)

Delete the listener.

delete(lh)

See Also

See Also

Functions
addlistener | daq.createSession | startBackground

Properties
IsContinuous | IsNotifyWhenScansQueuedBelowAuto |
NotifyWhenScansQueuedBelow

4-98

 ErrorOccurred Event

ErrorOccurred Event
Notify when device-related errors occur

Syntax

lh = addlistener(session,'ErrorOccurred',callback);

lh = addlistener(session,'ErrorOccurred',@(src,event) expr);

Description

lh = addlistener(session,'ErrorOccurred',callback); creates a listener for
the ErrorOccurred event. When an error occurs, the callback is executed. The callback
can be any MATLAB function with the (src,event) signature.

lh = addlistener(session,'ErrorOccurred',@(src,event) expr); creates a
listener for the ErrorOccurred event and fires an anonymous function. The anonymous
function requires the specified input arguments and executes the operation specified in
the expression expr. Anonymous functions provide a quick means of creating simple
functions without requiring that your function in stored in a file. For more information,
see Anonymous Functions (MATLAB).

The callback has two required parameters: src and event. src is the session
object for the listener, and event is a daq.ErrorOccurredInfo object. The
daq.ErrorOccurredInfo object contains the Error property, which is the
MException associated with the error. You can use the MException.getReport method
to return a formatted message that uses the same format as errors thrown by internal
MATLAB code.

Note: In background mode, errors and exceptions are not displayed by default. Use the
ErrorOccurred event listener to display the errors.

Examples

Create a session, and add an analog input channel:

4-99

4 Functions — Alphabetical List

s = daq.createSession('ni');

addAnalogInputChannel(s,'cDAQ1Mod1','ai0','Voltage');

Get a formatted report of the error:
lh = addlistener(s,'ErrorOccurred',@(src,event) disp(getReport(event.Error)));

Acquire data, wait, and delete the listener:

startBackground(s);

wait(s)

delete(lh)

See Also

See Also

Functions
addlistener | startBackground

Classes
MException

4-100

